We present a method that uses the properties of subharmonic functions to control spatial asymptotics of Green’s kernel of multidimensional Schrödinger operator with rough potential.
Accepté le :
Publié le :
DOI : 10.5802/crmath.217
Sergey A. Denisov 1
@article{CRMATH_2021__359_6_757_0, author = {Sergey A. Denisov}, title = {Subharmonic functions in scattering theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {757--762}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.217}, zbl = {07390658}, language = {en}, }
Sergey A. Denisov. Subharmonic functions in scattering theory. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 757-762. doi : 10.5802/crmath.217. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.217/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1975), pp. 151-218 | Zbl
[2] Spatial asymptotics of Green’s function and applications (to appear in J. Anal. Math.) | Zbl
[3] Absolutely continuous spectrum of multidimensional Schrödinger operator, Int. Math. Res. Not., Volume 2004 (2004) no. 74, pp. 205-214 | MR | Zbl
[4] Multidimensional conjecture: a survey, Recent trends in analysis (Theta Series in Advanced Mathematics), Volume 16, The Theta Foundation, 2013, pp. 101-112 | MR | Zbl
[5] Spatial asymptotics of Green’s function for elliptic operators and applications: a.c. spectral type, wave operators for wave equation, Trans. Am. Math. Soc., Volume 371 (2019) no. 12, pp. 8907-8970 | DOI | MR | Zbl
[6] Operator kernel estimates for functions of generalized Schrödinger operators, Proc. Am. Math. Soc., Volume 131 (2003) no. 3, pp. 911-920 | DOI | Zbl
[7] The existence of wave operators in scattering theory, Math. Z., Volume 146 (1976), pp. 69-91 | DOI | MR | Zbl
[8] The analysis of linear partial differential operators. IV. Fourier integral operators, Classics in Mathematics, Springer, 2009 | Zbl
[9] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, 132, Springer, 1966 | MR | Zbl
[10] Stability of the absolutely continuous spectrum for multidimensional Schrödinger operators, Int. Math. Res. Not., Volume 2005 (2005) no. 37, pp. 2289-2313 | DOI | MR | Zbl
[11] Absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials, Spectral theory of differential operators (Translations. Series 2), Volume 225, American Mathematical Society, 2008, pp. 205-214 | Zbl
[12] Spectral representations for Schrödinger operators with long-range potentials, Lecture Notes in Mathematics, 727, Springer, 1979 | MR | Zbl
[13] Szegő’s theorem and its descendants. Spectral theory for perturbations of orthogonal polynomials, Princeton University Press, 2011 | Zbl
[14] Mathematical scattering theory, Mathematical Surveys and Monographs, 158, American Mathematical Society, 1992 | Zbl
Cité par Sources :
Commentaires - Politique