We exhibit a non-hyperelliptic curve of genus 3 such that the class of the Ceresa cycle in the intermediate Jacobian of is torsion.
Accepted:
Published online:
DOI: 10.5802/crmath.226
Arnaud Beauville 1
@article{CRMATH_2021__359_7_871_0, author = {Arnaud Beauville}, title = {A non-hyperelliptic curve with torsion {Ceresa} class}, journal = {Comptes Rendus. Math\'ematique}, pages = {871--872}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.226}, zbl = {07398739}, language = {en}, }
Arnaud Beauville. A non-hyperelliptic curve with torsion Ceresa class. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 871-872. doi : 10.5802/crmath.226. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.226/
[1] Group-theoretic Johnson classes and non-hyperelliptic curves with torsion Ceresa class (2020) (https://arxiv.org/abs/2004.06146)
[2] is not algebraically equivalent to in its Jacobian, Ann. Math., Volume 117 (1983) no. 2, pp. 285-291 | DOI | MR | Zbl
[3] Multiplicative Chow–Künneth decompositions and varieties of cohomological K3 type, Ann. Mat. Pura Appl. (4), Volume 200 (2021) no. 5, pp. 2085-2126 | Zbl
[4] On the Abel–Jacobi maps of Fermat Jacobians, Math. Z., Volume 270 (2012) no. 1-2, pp. 423-444 | DOI | MR | Zbl
[5] A nontrivial algebraic cycle in the Jacobian variety of the Klein quartic, Math. Z., Volume 260 (2008) no. 2, pp. 265-275 | DOI | MR | Zbl
Cited by Sources:
Comments - Politique