Given a sequence of real or complex random variables and a sequence of numbers , an interesting problem is to determine the conditions under which the series is almost surely convergent. This paper extends the classical Menshov–Rademacher theorem on the convergence of orthogonal series to general series of dependent random variables and derives interesting sufficient conditions for the almost everywhere convergence of trigonometric series with respect to singular measures whose Fourier transform decays to 0 at infinity with positive rate.
Pour une suite de variables aléatoires réelles ou complexes et une suite de nombres , une question importante est de savoir sous quelles conditions la série aléatoire est convergente presque sûrement. Cette note généralise le théorème classique de Menshov–Rademacher sur la convergence de séries orthogonales aux séries plus générales de variables aléatoires dépendantes et en déduit des conditions suffisantes pour la convergence presque sûre des séries trigonométriques par rapport à des mesures singulières dont la transformée de Fourier tend vers à l’infini avec un taux positif.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.225
Safari Mukeru 1
@article{CRMATH_2021__359_7_861_0, author = {Safari Mukeru}, title = {Some applications of the {Menshov{\textendash}Rademacher} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {861--870}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.225}, zbl = {07398738}, language = {en}, }
Safari Mukeru. Some applications of the Menshov–Rademacher theorem. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 861-870. doi : 10.5802/crmath.225. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.225/
[1] The complete characterization of a.s. convergence of orthogonal series, Ann. Probab., Volume 41 (2013) no. 2, pp. 1055-1071 | MR | Zbl
[2] Convergence of series of dependent -subgaussian random variables, J. Math. Anal. Appl., Volume 338 (2008) no. 2, pp. 1188-1203 | DOI | MR | Zbl
[3] Negative association of random variables with applications, Ann. Stat., Volume 11 (1983), pp. 286-295 | MR | Zbl
[4] Some random series of functions, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, 1985 | MR | Zbl
[5] Orthogonal series, Translations of Mathematical Monographs, 75, American Mathematical Society, 1989 | MR | Zbl
[6] A note on the almost sure convergence for dependent random variables in Hilbert space, J. Theor. Probab., Volume 22 (2009) no. 2, pp. 506-513 | MR | Zbl
[7] Fourier transform and Hausdorff dimension, Cambridge Studies in Advanced Mathematics, 150, Cambridge University Press, 2015 | Zbl
[8] A note on the almost sure convergence of sums of negatively dependent random variables, Stat. Probab. Lett., Volume 15 (1992) no. 3, pp. 209-2013 | DOI | MR | Zbl
[9] General forms of the Menshov–Rademacher, Orlicz and Tandori theorems on orthogonal series, Methods Funct. Anal. Topol., Volume 17 (2011) no. 4, pp. 330-340 | MR | Zbl
[10] On the convergence of series of dependent random variables, J. Theor. Probab., Volume 34 (2021) no. 3, pp. 1299-1320 | DOI | MR | Zbl
[11] On weak law of large numbers for sums of negatively superadditive dependent random variables, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 1, pp. 13-21 | MR | Zbl
[12] The explicit characterization of coefficients of a.e. convergent orthogonal series, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 19-20, pp. 1213-1216 | DOI | MR | Zbl
[13] A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures, Invent. Math., Volume 180 (2010) no. 1, pp. 55-110 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy