Pour une suite de variables aléatoires réelles ou complexes
Given a sequence
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.225
Safari Mukeru 1

@article{CRMATH_2021__359_7_861_0, author = {Safari Mukeru}, title = {Some applications of the {Menshov{\textendash}Rademacher} theorem}, journal = {Comptes Rendus. Math\'ematique}, pages = {861--870}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.225}, zbl = {07398738}, language = {en}, }
Safari Mukeru. Some applications of the Menshov–Rademacher theorem. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 861-870. doi : 10.5802/crmath.225. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.225/
[1] The complete characterization of a.s. convergence of orthogonal series, Ann. Probab., Volume 41 (2013) no. 2, pp. 1055-1071 | MR | Zbl
[2] Convergence of series of dependent
[3] Negative association of random variables with applications, Ann. Stat., Volume 11 (1983), pp. 286-295 | MR | Zbl
[4] Some random series of functions, Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, 1985 | MR | Zbl
[5] Orthogonal series, Translations of Mathematical Monographs, 75, American Mathematical Society, 1989 | MR | Zbl
[6] A note on the almost sure convergence for dependent random variables in Hilbert space, J. Theor. Probab., Volume 22 (2009) no. 2, pp. 506-513 | MR | Zbl
[7] Fourier transform and Hausdorff dimension, Cambridge Studies in Advanced Mathematics, 150, Cambridge University Press, 2015 | Zbl
[8] A note on the almost sure convergence of sums of negatively dependent random variables, Stat. Probab. Lett., Volume 15 (1992) no. 3, pp. 209-2013 | DOI | MR | Zbl
[9] General forms of the Menshov–Rademacher, Orlicz and Tandori theorems on orthogonal series, Methods Funct. Anal. Topol., Volume 17 (2011) no. 4, pp. 330-340 | MR | Zbl
[10] On the convergence of series of dependent random variables, J. Theor. Probab., Volume 34 (2021) no. 3, pp. 1299-1320 | DOI | MR | Zbl
[11] On weak law of large numbers for sums of negatively superadditive dependent random variables, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 1, pp. 13-21 | MR | Zbl
[12] The explicit characterization of coefficients of a.e. convergent orthogonal series, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 19-20, pp. 1213-1216 | DOI | MR | Zbl
[13] A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures, Invent. Math., Volume 180 (2010) no. 1, pp. 55-110 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique