Comptes Rendus
Analyse harmonique
Regularity properties of Haar Frames
Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1107-1117.

We prove that pointwise and global Hölder regularity can be characterized using the coefficients on the Haar tight frame obtained by using a finite union of shifted Haar bases, despite the fact that the elements composing the frame are discontinuous.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.228
Classification : 42B35, 42C40, 46E35, 65T60, 68T05

Stéphane Jaffard 1 ; Hamid Krim 2

1 Univ Paris Est Creteil, CNRS, LAMA, F-94010 Creteil, France, Univ Gustave Eiffel, LAMA, F-77447 Marne-la-Vallée, France.
2 Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695 USA.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_9_1107_0,
     author = {St\'ephane Jaffard and Hamid Krim},
     title = {Regularity properties of {Haar} {Frames}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1107--1117},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {9},
     year = {2021},
     doi = {10.5802/crmath.228},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Jaffard
AU  - Hamid Krim
TI  - Regularity properties of Haar Frames
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 1107
EP  - 1117
VL  - 359
IS  - 9
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.228
LA  - en
ID  - CRMATH_2021__359_9_1107_0
ER  - 
%0 Journal Article
%A Stéphane Jaffard
%A Hamid Krim
%T Regularity properties of Haar Frames
%J Comptes Rendus. Mathématique
%D 2021
%P 1107-1117
%V 359
%N 9
%I Académie des sciences, Paris
%R 10.5802/crmath.228
%G en
%F CRMATH_2021__359_9_1107_0
Stéphane Jaffard; Hamid Krim. Regularity properties of Haar Frames. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1107-1117. doi : 10.5802/crmath.228. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.228/

[1] Guy Battle A block spin construction of ondelettes. Part II: The QFT connection, Commun. Math. Phys., Volume 114 (1988), pp. 93-102 | DOI | MR

[2] Gérard Bourdaud Ondelettes et espaces de Besov, Rev. Mat. Iberoam., Volume 11 (1995) no. 3, pp. 477-512 | DOI | MR | Zbl

[3] Joan Bruna; Wojciech Zaremba; Arthur Szlam; Yann Lecun Spectral networks and locally connected networks on graphs, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, Volume 27 (2016)

[4] Xiuyuan Cheng; Xu Chen; Stéphane Mallat Deep Haar scattering networks, Inf. Inference, Volume 5 (2016), pp. 105-133 | DOI | MR | Zbl

[5] Ole Christensen An introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser, 2003 | DOI | Zbl

[6] Ronald R. Coifman; David L. Donoho Translation-Invariant de-noising, Wavelets and Statistics. Proceedings of the 15th French-Belgian meeting of statisticians, held at Villard de Lans, France, November 16-18, 1994 (Oppenheim G. Antoniadis Anestis, ed.) (Lecture Notes in Statistics), Volume 103, Springer, 1995, pp. 121-150 | Zbl

[7] Ingrid Daubechies; Alex Grossmann; Yves Meyer Painless nonorthogonal expansions, J. Math. Phys., Volume 27 (1986) no. 5, pp. 1271-1283 | DOI | MR | Zbl

[8] Ingrid Daubechies; Jeffrey C. Lagarias On the Thermodynamic Formalism for Multifractal Functions, Rev. Math. Phys., Volume 6 (1994), pp. 1033-1070 | DOI | MR | Zbl

[9] Ronald A. DeVore; George B. Lorentz Constructive approximation, Grundlehren der Mathematischen Wissenschaften, 303, Springer, 1993 | MR | Zbl

[10] Ronald A. DeVore; Franklin Richards Saturation and inverse theorems for spline approximation, Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972) (A. Meir; A. Sharma, eds.) (International Series of Numerical Mathematics), Volume 21, Birkhäuser, 1973, pp. 73-82 | MR | Zbl

[11] Christopher Heil; Palle E. T. Jorgensen; David R. Larson Wavelets, Frames, and Operator Theory. Papers from the Focused Research Group Workshop, University of Maryland, College Park, MD, USA, January 15–21, 2003, Contemporary Mathematics, 345, American Mathematical Society, 2004 | Zbl

[12] Stéphane Jaffard Exposants de Hölder en des points donnés et coefficients d’ondelettes, C. R. Math. Acad. Sci. Paris, Volume 308 (1989) no. 4, pp. 79-81 | Zbl

[13] Stéphane Jaffard Wavelet techniques in multifractal analysis, Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot. Multifractals, probability and statistical mechanics, applications (Proceedings of Symposia in Pure Mathematics), Volume 72(2) (2004), pp. 91-152 (in part the proceedings of a special session held during the annual meeting of the American Mathematical Society, San Diego, CA, USA, January 2002) | Zbl

[14] Stéphane Jaffard; Benoît B. Mandelbrot Local regularity of nonsmooth wavelet expansions and application to Polya’s function, Adv. Math., Volume 120 (1996) no. 2, pp. 265-282 | DOI | MR | Zbl

[15] Stéphane Jaffard; Bruno Martin Multifractal analysis of the Brjuno function, Invent. Math., Volume 212 (2018) no. 1, pp. 109-132 | DOI | MR | Zbl

[16] Hamid Krim; Stéphane Jaffard; S. Roheda; Shahin Mahdizadehaghdam; A. Panahi On Stabilizing Generative Adversarial Networks (STGANS) (2021) (in preparation)

[17] Yann LeCun; Yoshua Bengio; Goeffrey Hinton Deep learning, Nature, Volume 521 (2015), pp. 436-444 | DOI

[18] Piere-Gilles Lemarié Ondelettes à localisation exponentielle, J. Math. Pures Appl., Volume 67 (1988) no. 3, pp. 227-236 | MR | Zbl

[19] Piere-Gilles Lemarié; Yves F. Meyer Ondelettes et bases hilbertiennes, Rev. Mat. Iberoam., Volume 2 (1986) no. 1-2, pp. 1-18 | DOI | MR | Zbl

[20] Ming Li; Zheng Ma; Yu Guang Wang; Xiaosheng Zhuang Fast Haar Transform for Graph Neural Networks, Neural Networks, Volume 128 (2020), pp. 188-198 | DOI | Zbl

[21] Yves Meyer Ondelettes et Opérateurs. I : Ondelettes. II : Opérateurs de Caldéron–Zygmund, Actualités Mathématiques, Hermann, 1990 | Zbl

[22] Jean-Christophe Pesquet; Hamid Krim; Hervé Carfantan Time-invariant orthonormal wavelet representations, IEEE Trans. Signal Process., Volume 44 (1996) no. 8, pp. 1964-1970 | DOI

[23] Jean-Christophe Pesquet; Hamid Krim; Hervé Carfantan; John G. Proakis Estimation of noisy signals using time-invariant wavelet packets, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Volume 1 (1993), pp. 31-34 | DOI

[24] Terence Tao On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal., Volume 3 (1996) no. 4, pp. 384-387 | MR | Zbl

[25] Gilbert G. Walter Pointwise convergence of wavelet expansions, J. Approx. Theory, Volume 80 (1995) no. 1, pp. 108-118 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique