[Critères de régularité ponctuelle.]
On obtient une caractérisation par ondelettes de la condition de régularité ponctuelle
A wavelet characterization of the pointwise regularity condition
Accepté le :
Publié le :
Stéphane Jaffard 1, 2
@article{CRMATH_2004__339_11_757_0, author = {St\'ephane Jaffard}, title = {Pointwise regularity criteria}, journal = {Comptes Rendus. Math\'ematique}, pages = {757--762}, publisher = {Elsevier}, volume = {339}, number = {11}, year = {2004}, doi = {10.1016/j.crma.2004.10.011}, language = {en}, }
Stéphane Jaffard. Pointwise regularity criteria. Comptes Rendus. Mathématique, Volume 339 (2004) no. 11, pp. 757-762. doi : 10.1016/j.crma.2004.10.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2004.10.011/
[1] Wavelet-based multifractal formalism: applications to DNA sequences, satellite images of the cloud structure and stock market data (A. Bunde; J. Kropp; H.J. Schellnhuber, eds.), The Science of Disasters, Springer, 2002, pp. 27-102
[2] Local properties of solutions of elliptic partial differential equations, Studia Math., Volume 20 (1961), pp. 171-227
[3] Pointwise smoothness, two-microlocalization and wavelet coefficients, Publ. Mat., Volume 35 (1991), pp. 155-168
[4] S. Jaffard, Wavelet techniques in multifractal analysis, in: M. Lapidus, M. van Frankenhuysen, Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proc. Sympos. Pure Math., American Mathematical Society, 2004, in press
[5] S. Jaffard, C. Melot, Wavelet analysis of fractal boundaries, Preprint, 2004
[6] Ondelettes et opérateurs, Hermann, 1990
Cité par Sources :
Commentaires - Politique