We propose a numerical method for the finite element simulation of micro-swimmers composed of several rigid bodies moving relatively to each other. Three distinct formulations are proposed to impose the relative velocities between the rigid bodies. We validate our model on the three-sphere swimmer, for which analytical results are available.
Dans cet article nous proposons une méthode numérique pour la simulation aux éléments finis d’une classe de micro-nageurs. Ces nageurs sont composés par différents corps rigides qui peuvent bouger les uns par rapport aux autres. Nous appliquons notre méthode sur un exemple de micro-nageur connu sous le nom de Three-sphere swimmer.
Accepted:
Published online:
Luca Berti 1; Vincent Chabannes 1; Laetitia Giraldi 2; Christophe Prud’homme 1
@article{CRMATH_2021__359_9_1119_0, author = {Luca Berti and Vincent Chabannes and Laetitia Giraldi and Christophe Prud{\textquoteright}homme}, title = {Modelling and finite element simulation of multi-sphere swimmers}, journal = {Comptes Rendus. Math\'ematique}, pages = {1119--1127}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.234}, language = {en}, }
TY - JOUR AU - Luca Berti AU - Vincent Chabannes AU - Laetitia Giraldi AU - Christophe Prud’homme TI - Modelling and finite element simulation of multi-sphere swimmers JO - Comptes Rendus. Mathématique PY - 2021 SP - 1119 EP - 1127 VL - 359 IS - 9 PB - Académie des sciences, Paris DO - 10.5802/crmath.234 LA - en ID - CRMATH_2021__359_9_1119_0 ER -
%0 Journal Article %A Luca Berti %A Vincent Chabannes %A Laetitia Giraldi %A Christophe Prud’homme %T Modelling and finite element simulation of multi-sphere swimmers %J Comptes Rendus. Mathématique %D 2021 %P 1119-1127 %V 359 %N 9 %I Académie des sciences, Paris %R 10.5802/crmath.234 %G en %F CRMATH_2021__359_9_1119_0
Luca Berti; Vincent Chabannes; Laetitia Giraldi; Christophe Prud’homme. Modelling and finite element simulation of multi-sphere swimmers. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1119-1127. doi : 10.5802/crmath.234. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.234/
[1] Self-propulsion of slender micro-swimmers by curvature control: N-link swimmers, Int. J. Non-Linear Mech., Volume 56 (2013), pp. 132-141 | DOI
[2] Optimally swimming stokesian robots, Discrete Contin. Dyn. Syst., Ser. B, Volume 18 (2013) no. 5, pp. 1189-1215 | DOI | MR | Zbl
[3] High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries, J. Comput. Appl. Math., Volume 246 (2013), pp. 1-9 Fifth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2011) | DOI | MR | Zbl
[4] Github Feel++ repository https://github.com/feelpp/feelpp/tree/develop/toolboxes/fluid/moving_body/three_sphere
[5] Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, 2014 | Zbl
[6] A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiphase Flow, Volume 25 (1999) no. 5, pp. 755-794 | DOI | MR
[7] Low Reynolds number hydrodynamics, Mechanics of Fluids and Transport Processes, Springer, 1983 | DOI | Zbl
[8] A 3D adaptive mesh moving scheme, Int. J. Numer. Methods Fluids, Volume 54 (2007) no. 6-8, pp. 923-944 | DOI | MR | Zbl
[9] Microhydrodynamics: Principles and Selected Applications, Butterworth–Heinemann series in chemical engineering, Dover Publications, 2005
[10] A stokesian submarine, ESAIM, Proc., Volume 28 (2009), pp. 150-161 | DOI | MR | Zbl
[11] Direct simulations of 2D fluid-particle flows in biperiodic domains, J. Comput. Phys., Volume 156 (1999) no. 2, pp. 325-351 | DOI | Zbl
[12] Simple swimmer at low Reynolds number: Three linked spheres, Phys. Rev. E, Volume 69 (2004), p. 062901 | DOI
[13] On the limitations of some popular numerical models of flagellated microswimmers: importance of long-range forces and flagellum waveform, R. Soc. open sci., Volume 6 (2019) no. 1, p. 180745 | DOI | MR
[14] Self-learning how to swim at low Reynolds number, Phys. Rev. Fluids, Volume 5 (2020) no. 7, p. 074101 | DOI
[15] On the self-propulsion of an -sphere micro-robot, J. Fluid Mech., Volume 716 (2013), R1, 11 pages | DOI | MR | Zbl
[16] Boundary behaviours of Leishmania mexicana: A hydrodynamic simulation study, J. Theor. Biol., Volume 462 (2019), pp. 311-320 | DOI | Zbl
Cited by Sources:
Comments - Policy