This Note studies a Rayleigh–Bénard system in an infinite layer, in the case of temperature-dependent viscosity, with rigid boundary conditions for the velocity at the bottom and free-slip at a top of the layer. It states the linearized problem in the relevant functional operator set-up and identifies, for each nonzero transverse frequency and Rayleigh number the (finite) number of modes which are unstable in time. This number is equal to the number of eigenvalues of a particular operator which are smaller than .
Accepté le :
Accepté après révision le :
Publié le :
Olivier Lafitte 1, 2
@article{CRMATH_2021__359_9_1165_0, author = {Olivier Lafitte}, title = {Unstable spectrum of a {Rayleigh{\textendash}B\'enard} system with variable viscosity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1165--1178}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.232}, language = {en}, }
Olivier Lafitte. Unstable spectrum of a Rayleigh–Bénard system with variable viscosity. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1165-1178. doi : 10.5802/crmath.232. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.232/
[1] Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Thèse, Ann. de Chim. et Phys., Volume 23 (1901) no. 7, pp. 62-144 | Zbl
[2] Hydrodynamic and hydromagnetic stability, International Series of Monographs on Physics, Clarendon Press, 1961 | Zbl
[3] Hydrodynamic stability, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1982 | Zbl
[4] Theory of detonation stability, Symposium (International) on Combustion, Volume 12 (1969) no. 1, pp. 711-721 | DOI
[5] Spectral instability of characteristic boundary layer flows, Duke Math. J., Volume 165 (2016) no. 16, pp. 3085-3146 | MR | Zbl
[6] On the dynamical Rayleigh–Taylor instability, Arch. Ration. Mech. Anal., Volume 167 (2003) no. 3, pp. 235-253 | MR | Zbl
[7] Linear Rayleigh–Taylor instability for viscous, compressible fluids, SIAM J. Math. Anal., Volume 42 (2010) no. 4, pp. 1688-1720 | MR | Zbl
[8] Some further results on the Bénard problem, Phys. Fluids, Volume 1 (1958), pp. 102-110 | Zbl
[9] Asymptotic methods for the eigenvalues of the Rayleigh equation for the linearized Rayleigh– Taylor instability, Asymptotic Anal., Volume 33 (2003) no. 3-4, pp. 189-235 | MR | Zbl
[10] The Erpenbeck high frequency instability Theorem for Zeldovich–Von Neumann–Döring detonations, Arch. Ration. Mech. Anal., Volume 204 (2012) no. 1, pp. 141-187 | DOI | Zbl
[11] Spectrum of the viscous Rayleigh–Taylor Instability (ongoing) (submitted in PhD Thesis: Université Sorbonne Paris Nord, Paris, France)
[12] Theoretical and numerical study of a thermal convection problem with temperature dependent viscosity in a infinite layer, Physica D, Volume 239 (2010) no. 13, pp. 1108-1119 | MR | Zbl
[13] On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side, Phil. Mag., Volume 32 (1916), pp. 529-546 | DOI | Zbl
[14] Numerical analysis of the Spectrum of the Orr–Sommerfeld Problem, Comput. Math. Math. Phys., Volume 47 (2007), pp. 1603-1621 | DOI | MR
[15] A trigonometric series expansion method for the Orr–Sommerfeld equation, AMM, Appl. Math. Mech., Engl. Ed., Volume 40 (2019) no. 6, pp. 877-888 | MR | Zbl
Cité par Sources :
Commentaires - Politique