logo CRAS
Comptes Rendus. Mathématique
Partial differential equations
On the existence of ground state solutions to critical growth problems nonresonant at zero
Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1161-1164.

We prove the existence of ground state solutions to critical growth p-Laplacian and fractional p-Laplacian problems that are nonresonant at zero.

Received:
Accepted:
Published online:
DOI: https://doi.org/10.5802/crmath.270
Classification: 35B33,  35J92,  35R11
Kanishka Perera 1

1. Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
@article{CRMATH_2021__359_9_1161_0,
     author = {Kanishka Perera},
     title = {On the existence of ground state solutions to critical growth problems nonresonant at zero},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1161--1164},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {9},
     year = {2021},
     doi = {10.5802/crmath.270},
     language = {en},
}
TY  - JOUR
AU  - Kanishka Perera
TI  - On the existence of ground state solutions to critical growth problems nonresonant at zero
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 1161
EP  - 1164
VL  - 359
IS  - 9
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.270
DO  - 10.5802/crmath.270
LA  - en
ID  - CRMATH_2021__359_9_1161_0
ER  - 
%0 Journal Article
%A Kanishka Perera
%T On the existence of ground state solutions to critical growth problems nonresonant at zero
%J Comptes Rendus. Mathématique
%D 2021
%P 1161-1164
%V 359
%N 9
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.270
%R 10.5802/crmath.270
%G en
%F CRMATH_2021__359_9_1161_0
Kanishka Perera. On the existence of ground state solutions to critical growth problems nonresonant at zero. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1161-1164. doi : 10.5802/crmath.270. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.270/

[1] Gianni Arioli; Filippo Gazzola Some results on p-Laplace equations with a critical growth term, Differ. Integral Equ., Volume 11 (1998) no. 2, pp. 311-326 | MR 1741848 | Zbl 1131.35325

[2] Zhijie Chen; Naoki Shioji; Wenming Zou Ground state and multiple solutions for a critical exponent problem, NoDEA, Nonlinear Differ. Equ. Appl., Volume 19 (2012) no. 3, pp. 253-277 | Article | MR 2926297

[3] Marco Degiovanni; Sergio Lancelotti Linking solutions for p-Laplace equations with nonlinearity at critical growth, J. Funct. Anal., Volume 256 (2009) no. 11, pp. 3643-3659 | Article | MR 2514055 | Zbl 1170.35418

[4] Henrik Egnell Existence and nonexistence results for m-Laplace equations involving critical Sobolev exponents, Arch. Ration. Mech. Anal., Volume 104 (1988) no. 1, pp. 57-77 | Article | MR 956567 | Zbl 0675.35036

[5] Jesús P. Garcia-Azorero; Ireneo Peral Alonso Existence and nonuniqueness for the p-Laplacian: nonlinear eigenvalues, Commun. Partial Differ. Equations, Volume 12 (1987) no. 12, pp. 1389-1430 | MR 912211 | Zbl 0637.35069

[6] Mohammed Guedda; Laurent Véron Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 879-902 | Article | MR 1009077 | Zbl 0714.35032

[7] Sunra Mosconi; Kanishka Perera; Marco Squassina; Yang Yang The Brezis–Nirenberg problem for the fractional p-Laplacian, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 4, 105, 25 pages | MR 3530213 | Zbl 1361.35198

[8] Kanishka Perera Nontrivial critical groups in p-Laplacian problems via the Yang index, Topol. Methods Nonlinear Anal., Volume 21 (2003) no. 2, pp. 301-309 | Article | MR 1998432 | Zbl 1039.47041

[9] Kanishka Perera; Marco Squassina; Yang Yang Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr., Volume 289 (2016) no. 2-3, pp. 332-342 | Article | MR 3458311 | Zbl 1336.35050

[10] Kanishka Perera; Marco Squassina; Yang Yang Bifurcation and multiplicity results for critical p-Laplacian problems, Topol. Methods Nonlinear Anal., Volume 47 (2016) no. 1, pp. 187-194 | MR 3469053

[11] Andrzej Szulkin; Tobias Weth; Michel Willem Ground state solutions for a semilinear problem with critical exponent, Differ. Integral Equ., Volume 22 (2009) no. 9-10, pp. 913-926 | MR 2553063 | Zbl 1240.35205

Cited by Sources: