We prove the existence of ground state solutions to critical growth
Accepté le :
Publié le :
Kanishka Perera 1

@article{CRMATH_2021__359_9_1161_0, author = {Kanishka Perera}, title = {On the existence of ground state solutions to critical growth problems nonresonant at zero}, journal = {Comptes Rendus. Math\'ematique}, pages = {1161--1164}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.270}, language = {en}, }
TY - JOUR AU - Kanishka Perera TI - On the existence of ground state solutions to critical growth problems nonresonant at zero JO - Comptes Rendus. Mathématique PY - 2021 SP - 1161 EP - 1164 VL - 359 IS - 9 PB - Académie des sciences, Paris DO - 10.5802/crmath.270 LA - en ID - CRMATH_2021__359_9_1161_0 ER -
Kanishka Perera. On the existence of ground state solutions to critical growth problems nonresonant at zero. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1161-1164. doi : 10.5802/crmath.270. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.270/
[1] Some results on
[2] Ground state and multiple solutions for a critical exponent problem, NoDEA, Nonlinear Differ. Equ. Appl., Volume 19 (2012) no. 3, pp. 253-277 | DOI | MR
[3] Linking solutions for
[4] Existence and nonexistence results for
[5] Existence and nonuniqueness for the
[6] Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal., Theory Methods Appl., Volume 13 (1989) no. 8, pp. 879-902 | DOI | MR | Zbl
[7] The Brezis–Nirenberg problem for the fractional
[8] Nontrivial critical groups in
[9] Bifurcation and multiplicity results for critical fractional
[10] Bifurcation and multiplicity results for critical
[11] Ground state solutions for a semilinear problem with critical exponent, Differ. Integral Equ., Volume 22 (2009) no. 9-10, pp. 913-926 | MR | Zbl
Cité par Sources :
Commentaires - Politique