We prove that a harmonic quasiconformal mapping defined on a finitely connected domain in the plane, all of whose boundary components are either points or quasicircles, admits a quasiconformal extension to the whole plane if its Schwarzian derivative is small. We also make the observation that a univalence criterion for harmonic mappings holds on uniform domains.
Accepté le :
Publié le :
DOI : 10.5802/crmath.233
Iason Efraimidis 1
@article{CRMATH_2021__359_7_905_0, author = {Iason Efraimidis}, title = {Quasiconformal extension for harmonic mappings on finitely connected domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {905--909}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.233}, zbl = {07398742}, language = {en}, }
Iason Efraimidis. Quasiconformal extension for harmonic mappings on finitely connected domains. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 905-909. doi : 10.5802/crmath.233. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.233/
[1] Quasiconformal reflections, Acta Math., Volume 109 (1963), pp. 291-301 | DOI | MR | Zbl
[2] On quasiconformal rigidity in space and plane, Ann. Acad. Sci. Fenn., Math., Volume 13 (1988) no. 1, pp. 81-92 | DOI | MR | Zbl
[3] The Schwarzian derivative for harmonic mappings, J. Anal. Math., Volume 91 (2003), pp. 329-351 | DOI | MR | Zbl
[4] Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, 2004 | MR | Zbl
[5] Criteria for univalence and quasiconformal extension for harmonic mappings on planar domains (https://arxiv.org/abs/2009.14766, to appear in the Annales Fennici Mathematici) | Zbl
[6] The ubiquitous quasidisk, Mathematical Surveys and Monographs, 184, American Mathematical Society, 2012 | MR | Zbl
[7] Uniform domains and the quasihyperbolic metric, J. Anal. Math., Volume 36 (1979), pp. 50-74 | DOI | MR | Zbl
[8] Criteria for univalence and quasiconformal extension of harmonic mappings in terms of the Schwarzian derivative, Arch. Math., Volume 104 (2015) no. 1, pp. 53-59 | DOI | MR | Zbl
[9] Pre-Schwarzian and Schwarzian derivatives of harmonic mappings, J. Geom. Anal., Volume 25 (2015) no. 1, pp. 64-91 | DOI | MR | Zbl
[10] Quasiconformal mappings in the plane, Grundlehren der Mathematischen Wissenschaften, 126, Springer, 1973 | MR | Zbl
[11] Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn., Math., Volume 4 (1979) no. 2, pp. 383-401 | DOI | MR | Zbl
[12] Univalence criteria in multiply-connected domains, Trans. Am. Math. Soc., Volume 260 (1980) no. 2, pp. 459-473 | DOI | MR | Zbl
[13] Fredholm eigenvalues and quasiconformal mapping, Acta Math., Volume 111 (1964), pp. 121-142 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique