Comptes Rendus
Article de recherche - Analyse et géométrie complexes
On quasiconformal extension of harmonic mappings with nonzero pole
[Sur l’extension quasiconforme des applications harmoniques à pôle non nul]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 445-454.

Let ΣHk(p) be the class of sense-preserving univalent harmonic mappings defined on the open unit disk D of the complex plane with a simple pole at z=p(0,1) that have k-quasiconformal extensions (0k<1) to the extended complex plane. We first derive a sufficient condition for harmonic mappings defined on D with pole at z=p(0,1) to belong in the class ΣHk(p). As a consequence of this, we derive a convolution result involving functions in ΣHki(p), 0ki<1 for i=1,2. We also consider harmonic mappings with a nonzero pole defined on a linearly connected domain ΩD and prove criteria for univalence and quasiconformal extensions for such mappings.

Soit ΣHk(p) la classe des applications harmoniques injectives préservant l’orientation, définies sur le disque unité ouvert D du plan complexe ayant un pôle simple en z=p(0,1) et qui ont une extension k-quasiconforme (0k<1) au plan complexe étendu. Nous décrivons d’abord une condition suffisante pour qu’une application harmonique appartienne à la classe ΣHk(p). En conséquence, nous obtenons un résultat de convolution impliquant des applications dans ΣHki(p), 0ki<1 pour i=1,2. Nous considérons également des applications harmoniques avec un pôle non nul définies sur un domaine linéairement connecté ΩD et décrivons des critères d’univalence et d’extensions quasiconformes pour de telles applications.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.686
Classification : 31A05, 30C62, 30C55
Keywords: Quasiconformal mappings, harmonic mappings, linearly connected domain, quasidisk
Mots-clés : Applications quasiconformes, applications harmoniques, domaine linéairement connecté, quasidisque

Bappaditya Bhowmik 1 ; Goutam Satpati 1

1 Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G5_445_0,
     author = {Bappaditya Bhowmik and Goutam Satpati},
     title = {On quasiconformal extension of harmonic mappings with nonzero pole},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {445--454},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.686},
     language = {en},
}
TY  - JOUR
AU  - Bappaditya Bhowmik
AU  - Goutam Satpati
TI  - On quasiconformal extension of harmonic mappings with nonzero pole
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 445
EP  - 454
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.686
LA  - en
ID  - CRMATH_2025__363_G5_445_0
ER  - 
%0 Journal Article
%A Bappaditya Bhowmik
%A Goutam Satpati
%T On quasiconformal extension of harmonic mappings with nonzero pole
%J Comptes Rendus. Mathématique
%D 2025
%P 445-454
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.686
%G en
%F CRMATH_2025__363_G5_445_0
Bappaditya Bhowmik; Goutam Satpati. On quasiconformal extension of harmonic mappings with nonzero pole. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 445-454. doi : 10.5802/crmath.686. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.686/

[1] Lars V. Ahlfors Quasiconformal reflections, Acta Math., Volume 109 (1963), pp. 291-301 | DOI | MR | Zbl

[2] Bappaditya Bhowmik; Goutam Satpati Loewner chain and quasiconformal extension of some classes of univalent functions, Complex Var. Elliptic Equ., Volume 65 (2020) no. 4, pp. 544-557 | DOI | MR | Zbl

[3] Bappaditya Bhowmik; Goutam Satpati An area theorem for harmonic mappings with nonzero pole having quasiconformal extensions, Proc. Am. Math. Soc., Volume 152 (2024) no. 9, pp. 3881-3891 | DOI | MR | Zbl

[4] Bappaditya Bhowmik; Goutam Satpati; Toshiyuki Sugawa Quasiconformal extension of meromorphic functions with nonzero pole, Proc. Am. Math. Soc., Volume 144 (2016) no. 6, pp. 2593-2601 | DOI | MR

[5] Peter Duren Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, 2004, xii+212 pages | DOI | MR

[6] Walter Hengartner; Glenn Edward Schober Univalent harmonic functions, Trans. Am. Math. Soc., Volume 299 (1987) no. 1, pp. 1-31 | DOI | MR

[7] Rodrigo Hernández; María J. Martín Quasiconformal extension of harmonic mappings in the plane, Ann. Acad. Sci. Fenn., Math., Volume 38 (2013) no. 2, pp. 617-630 | DOI | MR | Zbl

[8] Ikkei Hotta Explicit quasiconformal extensions and Löwner chains, Proc. Japan Acad., Ser. A, Volume 85 (2009) no. 8, pp. 108-111 | DOI | MR | Zbl

[9] Jan G. Krzyż Convolution and quasiconformal extension, Comment. Math. Helv., Volume 51 (1976) no. 1, pp. 99-104 | DOI | MR | Zbl

[10] Olli E. Lehto Schlicht functions with a quasiconformal extension, Ann. Acad. Sci. Fenn., Ser. A I, Volume 500 (1971), 10 pages | MR | Zbl

[11] Olli E. Lehto Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, 109, Springer, 1987, xii+257 pages | DOI | MR

[12] Olli E. Lehto; Kaarlo Ilmari Virtanen Quasiconformal mappings in the plane, Grundlehren der Mathematischen Wissenschaften, 126, Springer, 1973, viii+258 pages | DOI | MR

[13] Miodrag Mateljević Dirichlet’s principle, distortion and related problems for harmonic mappings, Publ. Inst. Math., Nouv. Sér., Volume 75(89) (2004), pp. 147-171 | DOI | MR | Zbl

[14] Christian Pommerenke Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer, 1992, x+300 pages | DOI | MR

[15] Toshiyuki Sugawa Quasiconformal extension of strongly spirallike functions, Comput. Methods Funct. Theory, Volume 12 (2012) no. 1, pp. 19-30 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique