[Courbes aléatoires par soudure conforme]
We construct a conformally invariant random family of closed curves in the plane by welding of random homeomorphisms of the unit circle given in terms of the exponential of Gaussian Free Field. We conjecture that our curves are locally related to
On construit une famille aléatoire conformément invariante de courbes fermées dans le plan par soudure d'un cercle unité donné en terme d'exponentielle d'un champ libre gaussien. On conjecture que nos courbes sont localement reliées à
Publié le :
Kari Astala 1 ; Peter Jones 2 ; Antti Kupiainen 1 ; Eero Saksman 1
@article{CRMATH_2010__348_5-6_257_0, author = {Kari Astala and Peter Jones and Antti Kupiainen and Eero Saksman}, title = {Random curves by conformal welding}, journal = {Comptes Rendus. Math\'ematique}, pages = {257--262}, publisher = {Elsevier}, volume = {348}, number = {5-6}, year = {2010}, doi = {10.1016/j.crma.2009.12.014}, language = {en}, }
Kari Astala; Peter Jones; Antti Kupiainen; Eero Saksman. Random curves by conformal welding. Comptes Rendus. Mathématique, Volume 348 (2010) no. 5-6, pp. 257-262. doi : 10.1016/j.crma.2009.12.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.12.014/
[1] Canonical Brownian motion on the space of univalent functions and resolution of Beltrami equations by a continuity method along stochastic flows, J. Math. Pures Appl., Volume 83 (2004), pp. 955-1018
[2] Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, vol. 47, Princeton University Press, 2009
[3] Random conformal weldings, 2009 | arXiv
[4] Log-infinitely divisible multifractal processes, Comm. Math. Phys., Volume 236 (2003), pp. 449-475
[5] Random multiplicative multifractal measures. I–III, Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 17-52
[6] The boundary correspondence under quasiconformal mappings, Acta Math., Volume 96 (1956), pp. 125-142
[7] Liouville quantum gravity and KPZ, 2008 | arXiv
[8] Duality and the Knizhnik–Polyakov–Zamolodchikov relation in Liouville quantum gravity, Phys. Rev. Lett., Volume 102 (2009) no. 150603 (4 pp)
[9] Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential, J. Phys. A: Math. Theor., Volume 41 (2008), p. 372001
[10] Removability theorems for Sobolev functions and quasiconformal maps, Arkiv för Matematik, Volume 38 (2000), pp. 263-279
[11] Sur le chaos multiplicatif, Ann. Sci. Math. Québec, Volume 9 (1985), pp. 435-444
[12] Homeomorphisms with a given dilatation, Oslo, 1968 (Lecture Notes in Mathematics), Volume vol. 118, Springer (1970), pp. 58-73
[13] On the boundary correspondence of quasiconformal mappings of domains bounded by quasicircles, Pacific J. Math., Volume 28 (1969), pp. 653-661
[14] Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., Volume 118 (2000), pp. 221-288
- Conformal welding for critical Liouville quantum gravity, Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, Volume 57 (2021) no. 3, pp. 1229-1254 | DOI:10.1214/20-aihp1116 | Zbl:1483.30029
- Conformal weldings of random surfaces: SLE and the quantum gravity zipper, The Annals of Probability, Volume 44 (2016) no. 5 | DOI:10.1214/15-aop1055
- Asymptoticity of grafting and Teichmüller rays. II, Geometriae Dedicata, Volume 176 (2015), pp. 185-213 | DOI:10.1007/s10711-014-9963-5 | Zbl:1326.30042
- Classical and stochastic Löwner-Kufarev equations, Harmonic and complex analysis and its applications, Cham: Birkhäuser/Springer, 2014, pp. 39-134 | DOI:10.1007/978-3-319-01806-5_2 | Zbl:1318.30015
- Freezing transitions and extreme values: random matrix theory,
and disordered landscapes, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, Volume 372 (2014) no. 2007, p. 32 (Id/No 20120503) | DOI:10.1098/rsta.2012.0503 | Zbl:1330.82028 - Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal
noise, Journal of Statistical Physics, Volume 149 (2012) no. 5, pp. 898-920 | DOI:10.1007/s10955-012-0623-6 | Zbl:1260.82016 - Möbius transformations and extended diffusion above the homeomorphisms of the disk, Analysis and Mathematical Physics, Volume 1 (2011) no. 2-3, pp. 213-240 | DOI:10.1007/s13324-011-0013-2 | Zbl:1280.30003
- Multifractals in Weyl asymptotic distribution, Nonlinearity, Volume 24 (2011) no. 10, p. 2785 | DOI:10.1088/0951-7715/24/10/008
- Schramm-Loewner Evolution and Liouville Quantum Gravity, Physical Review Letters, Volume 107 (2011) no. 13 | DOI:10.1103/physrevlett.107.131305
- , Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden, Volume 57 (2011), p. 239 | DOI:10.3384/ecp11057239
- Brownian measures on Jordan-Virasoro curves associated to the Weil-Petersson metric, Journal of Functional Analysis, Volume 259 (2010) no. 12, pp. 3037-3079 | DOI:10.1016/j.jfa.2010.08.002 | Zbl:1213.60129
Cité par 11 documents. Sources : Crossref, zbMATH
☆ We thank M. Bauer, D. Bernard, S. Rohde and S. Smirnov for discussions and L. Dubois for help in French.
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier