[Une méthode numérique rapide et précise pour le transfer radiatif dans l’atmosphère]
Pour résoudre les équations du transfert radiatif pour l’atmosphère nous nous tournons vers une formulation intégrale équivalente qui a l’avantage de ne pas contenir de fonction singulière. Une méthode itérative est proposée pour sa résolution et un résultat de convergence est donné.
En corollaire un résultat d’existence et d’unicité est prouvé pour les équations du transfert radiatif, 1D en espace, sous des hypothèses assez générales sur les coefficients d’absorption et de scattering et leurs dépendances en fréquence.
Une étude numérique termine cette étude ainsi que quelques commentaires sur l’effet des gaz à effet de serre sur la temperature de l’atmosphère.
To solve the radiative transfer equations for the atmosphere, we turn to an equivalent integral equation which has no numerically singular terms. An iterative scheme is proposed for its solution and convergence is proved.
The side effect of this proof is an existence result for the radiative transfer equations, in one spatial variable, with frequency dependent absorption and scattering coefficients.
A numerical study is given with some comments on the effect of greenhouse gases on the temperature in the atmosphere.
Accepté le :
Publié le :
Olivier Pironneau 1
@article{CRMATH_2021__359_9_1179_0, author = {Olivier Pironneau}, title = {A {Fast} and {Accurate} {Numerical} {Method} for {Radiative} {Transfer} in the {Atmosphere}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1179--1189}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.239}, language = {en}, }
Olivier Pironneau. A Fast and Accurate Numerical Method for Radiative Transfer in the Atmosphere. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1179-1189. doi : 10.5802/crmath.239. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.239/
[1] The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation, J. Funct. Anal., Volume 77 (1988) no. 2, pp. 434-460 | DOI | MR | Zbl
[2] Radiative Transfer for the Greenhouse Effect (hal-03094855, v5, submitted to SeMA Journal: Bulletin of the Spanish Society of Applied Mathematics, https://hal.sorbonne-universite.fr/hal-03094855)
[3] Transfert radiatif dans une atmosphère tridimensionnelle, Ph. D. Thesis, Université de Lille, France (2015)
[4] Mathematical Analysis and Numerical Methods for Science and Technology. Volume 3: Spectral theory and applications, Springer, 2000 no. 9 (with the collaboration of Michel Artola and Michel Cessenat. Translated from the French by John C. Amson. 2nd printing) | Zbl
[5] Greenhouse Effect: The Relative Contributions of Emission Height and Total Absorption, Journal of Climate, American Meteorological Society, Volume 33 (2020) no. 9, pp. 3827-3844 | DOI
[6] Mathematical Geoscience, Interdisciplinary Applied Mathematics, 36, Springer, 2011 | MR | Zbl
[7] Existence and uniqueness for the radiative transfer equations for the atmosphere. Volume in honor of Prof. Pedro Diaz (2021) (to appear)
[8] New developments in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | MR | Zbl
[9] Numerical Methods in Multidimensional Radiative Transfer (Guido Kanschat; Erik Meinköhn; Rolf Rannacher; Rainer Wehrse, eds.), Springer, 2009 | DOI
[10] Application of accretive operators theory to the radiative transfer equations, SIAM J. Math. Anal., Volume 18 (1987) no. 2, pp. 393-408 | DOI | MR | Zbl
[11] The equations of Radiation Hydrodynamics, International series of monographs in natural philosophy, 54, Pergamon Press, 1973
[12] Radiation in the Atmosphere. A Course in Theoretical Meteorology, Cambridge University Press, 2007 | DOI
Cité par Sources :
Commentaires - Politique