We study the maximum value of the confluent hypergeometric function with oscillatory conditions of parameters. As a consequence, we obtain new inequalities for the Gauss hypergeometric function.
Accepted:
Published online:
Bujar Xh. Fejzullahu 1
![](/mathematique/static/ptf/img/CC-BY%204.0.png)
@article{CRMATH_2021__359_10_1217_0, author = {Bujar Xh. Fejzullahu}, title = {On the maximum value of a confluent hypergeometric function}, journal = {Comptes Rendus. Math\'ematique}, pages = {1217--1224}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.256}, language = {en}, }
Bujar Xh. Fejzullahu. On the maximum value of a confluent hypergeometric function. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1217-1224. doi : 10.5802/crmath.256. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.256/
[1] On the product of two Legendre polynomials with different arguments, Proc. Lond. Math. Soc., Volume 41 (1936), pp. 215-220 | DOI | MR | Zbl
[2] A survey of some bounds for Gauss’ hypergeometric function and related bivariate means, J. Math. Inequal., Volume 4 (2010) no. 1, pp. 45-52 | DOI | MR | Zbl
[3] Some inequalities for hypergeometric functions, Proc. Am. Math. Soc., Volume 17 (1966), pp. 32-39 | DOI | MR
[4] Inequalities for hypergeometric functions, Arch. Ration. Mech. Anal., Volume 4 (1960), pp. 341-351 | DOI | MR | Zbl
[5] Die Laguerre-Pinney-Transformation, Aequationes Math., Volume 22 (1981), pp. 73-85 | DOI | MR | Zbl
[6] Inequalities and monotonicity of ratios for generalized hypergeometric function, J. Approx. Theory, Volume 161 (2009) no. 1, pp. 337-352 | DOI | MR | Zbl
[7] Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator, Adv. Math., Volume 333 (2018), pp. 796-821 | DOI | MR | Zbl
[8] An upper bound on Jacobi polynomials, J. Approx. Theory, Volume 149 (2007) no. 2, pp. 116-130 | DOI | MR | Zbl
[9] Equioscillatory property of the Laguerre polynomials, J. Approx. Theory, Volume 162 (2010) no. 11, pp. 2021-2047 | DOI | MR | Zbl
[10] Orthogonal polynomials for exponential weights on . II, J. Approx. Theory, Volume 139 (2006) no. 1-2, pp. 107-143 | DOI | MR | Zbl
[11] Inequalities for Laguerre functions, J. Inequal. Appl., Volume 1 (1997) no. 3, pp. 293-299 | MR | Zbl
[12] The special functions and their approximations, Vol. I, Mathematics in Science and Engineering, 53, Academic Press Inc., 1969 | Zbl
[13] Inequalities for generalized hypergeometric functions, J. Approx. Theory, Volume 5 (1972), pp. 41-65 | DOI | MR | Zbl
[14] Formulas and theorems for the special functions of Mathematical Physics, Grundlehren der Mathematischen Wissenschaften, 52, Springer, 1966 | DOI
[15] Product Formulas for Bessel, Whittaker, and Jacobi Functions via the Solution of an Associated Cauchy Problem, Anniversary Volume on Approximation Theory and Functional Analysis (ISNM. International Series of Numerical Mathematics), Volume 65, Birkhäuser, 1984, pp. 449-462 | DOI | MR | Zbl
[16] A new proof of Watson’s product formula for Laguerre polynomials via a Cauchy problem associated with a singular differential operator, SIAM J. Math. Anal., Volume 17 (1986), pp. 1010-1032 | DOI | MR | Zbl
[17] Where does the sup norm of a weighted polynomial live?(A generalization of incomplete polynomials), Constr. Approx., Volume 1 (1985), pp. 71-91 | DOI | MR | Zbl
[18] NIST Digital Library of Mathematical Functions (Frank W. J. Olver; Adri B. Olde Daalhuis; Daniel W. Lozier; Barry I. Schneider; Ronald F. Boisvert; Charles W. Clark; Bruce R. Miller; Bonita V. Saunders; Howard S. Cohl; Marjorie A. McClain, eds.) (http://dlmf.nist.gov/)
[19] The Weyl transform and Laguerre polynomials, Matematiche, Volume 27 (1973), pp. 301-323 | Zbl
[20] A new proof of a Watson’s formula, Can. Math. Bull., Volume 31 (1988) no. 4, pp. 414-418 | DOI | MR | Zbl
[21] Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975 | MR
[22] Monotonicity and sharp inequalities related to complete -elliptic integrals of the first kind, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 8, pp. 961-970 | DOI | MR | Zbl
[23] Another note on Laguerre polynomials, J. Lond. Math. Soc., Volume 14 (1939), pp. 19-22 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy