We provide a lower value for the volume of a unit vector field tangent to an antipodally punctured Euclidean sphere depending on the length of an ellipse determined by the indexes of its singularities. We also exhibit minimizing vector fields within each index class and show that they are the only ones that are sharp for the volume. These fields have areas given essentially by the length of ellipses depending just on the indexes in and .
Revised:
Accepted:
Published online:
Fabiano G. B. Brito 1; Jackeline Conrado 2; Icaro Gonçalves 1; Adriana V. Nicoli 2
@article{CRMATH_2021__359_10_1225_0, author = {Fabiano G. B. Brito and Jackeline Conrado and Icaro Gon\c{c}alves and Adriana V. Nicoli}, title = {Area minimizing unit vector fields on antipodally punctured unit 2-sphere}, journal = {Comptes Rendus. Math\'ematique}, pages = {1225--1232}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.258}, language = {en}, }
TY - JOUR AU - Fabiano G. B. Brito AU - Jackeline Conrado AU - Icaro Gonçalves AU - Adriana V. Nicoli TI - Area minimizing unit vector fields on antipodally punctured unit 2-sphere JO - Comptes Rendus. Mathématique PY - 2021 SP - 1225 EP - 1232 VL - 359 IS - 10 PB - Académie des sciences, Paris DO - 10.5802/crmath.258 LA - en ID - CRMATH_2021__359_10_1225_0 ER -
%0 Journal Article %A Fabiano G. B. Brito %A Jackeline Conrado %A Icaro Gonçalves %A Adriana V. Nicoli %T Area minimizing unit vector fields on antipodally punctured unit 2-sphere %J Comptes Rendus. Mathématique %D 2021 %P 1225-1232 %V 359 %N 10 %I Académie des sciences, Paris %R 10.5802/crmath.258 %G en %F CRMATH_2021__359_10_1225_0
Fabiano G. B. Brito; Jackeline Conrado; Icaro Gonçalves; Adriana V. Nicoli. Area minimizing unit vector fields on antipodally punctured unit 2-sphere. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1225-1232. doi : 10.5802/crmath.258. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.258/
[1] Area minimizing vector fields on round 2-spheres, J. Reine Angew. Math., Volume 640 (2010), pp. 85-99 | MR | Zbl
[2] Unit vector fields on antipodally punctured spheres: big index, big volume, Bull. Soc. Math. Fr., Volume 136 (2008) no. 1, pp. 147-157 | DOI | Numdam | MR | Zbl
[3] Poincaré index and the volume functional of unit vector fields on punctured spheres, Manuscr. Math., Volume 162 (2019) no. 3-4, pp. 487-500 | Zbl
[4] Total curvature and volume of foliations on the sphere , Cent. Eur. J. Math., Volume 7 (2009) no. 4, pp. 660-669 | MR | Zbl
[5] On the volume of a unit vector field on the three-sphere, Comment. Math. Helv., Volume 61 (1986), pp. 177-192 | DOI | MR | Zbl
[6] Volumes of flows, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 923-932 | DOI | MR | Zbl
[7] Volumes of vector fields on spheres, Trans. Am. Math. Soc., Volume 336 (1993) no. 1, pp. 69-78 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy