We study some hybrid inverse problems associated to BVP’s for Schrödinger and Helmholtz type equations. The inverse problems we consider consist in the determination of coefficients from the knowledge of internal energy densities. We establish local Lipschitz stability inequalities as well as Hölder stability inequalities.
Revised:
Accepted:
Published online:
Mourad Choulli 1
@article{CRMATH_2021__359_10_1251_0, author = {Mourad Choulli}, title = {Some stability inequalities for hybrid inverse problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1251--1265}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.262}, language = {en}, }
Mourad Choulli. Some stability inequalities for hybrid inverse problems. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1251-1265. doi : 10.5802/crmath.262. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.262/
[1] Lectures on elliptic methods for hybrid inverse problems, Cours Spécialisés (Paris), 25, Société Mathématique de France, 2018
[2] Global stability for a coupled physics inverse problem, Inverse Probl., Volume 30 (2014) no. 7, 075008, 10 pages | MR | Zbl
[3] Stability for quantitative photoacoustic tomography with well chosen illuminations, Ann. Mat. Pura Appl., Volume 196 (2017) no. 2, pp. 395-406 | DOI | MR | Zbl
[4] Quantitative estimates on Jacobians for hybrid inverse problems, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program., Volume 8 (2015) no. 3, pp. 25-41 | Zbl
[5] Microwave imaging by elastic deformation, SIAM J. Appl. Math., Volume 71 (2011) no. 6, pp. 2112-2130 | DOI | MR | Zbl
[6] Quantitative thermo-acoustics and related problems, Inverse Probl., Volume 27 (2011) no. 5, 055007, 15 pages | MR | Zbl
[7] Inverse scattering and acousto-optic imaging, Phys. Rev. Lett., Volume 104 (2010), 043902 | DOI
[8] Inverse diffusion theory of photoacoustics, Inverse Probl., Volume 26 (2010) no. 8, 085010, 20 pages | MR | Zbl
[9] Diffusion coefficients estimation for elliptic partial differential equations, SIAM J. Math. Anal., Volume 49 (2017) no. 2, pp. 1570-1592 | DOI | MR | Zbl
[10] Stability for quantitative photoacoustic tomography revisited (1905) (https://arxiv.org/abs/1905.07914)
[11] Stability inequality for a semilinear elliptic inverse problem, NoDEA, Nonlinear Differ. Equ. Appl., Volume 28 (2021), 37, 26 pages | DOI | Zbl
[12] New stability estimates for the inverse medium problem with internal data, SIAM J. Math. Anal., Volume 47 (2015) no. 3, pp. 1778-1799 | DOI | MR | Zbl
[13] Hölder stability for an inverse medium problem with internal data, Res. Math. Sci., Volume 6 (2019) no. 1, 9, 15 pages | Zbl
[14] Unique continuation for elliptic operators: a geometric-variational approach, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 347-366 | DOI | MR | Zbl
[15] Elliptic partial differential equations of second order, Springer, 1998
[16] Non-homogeneous boundary value problems and applications, Vol. I, Grundlehren der Mathematischen Wissenschaften, 18, Springer, 1972, xvi+357 pages
[17] Conductivity imaging with a single measurement of boundary and interior data, Inverse Probl., Volume 23 (2007) no. 6, pp. 2551-2563 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy