We prove pointwise bounds for two-parameter families of Jacobi polynomials. Our bounds imply estimates for a class of functions arising from the spectral analysis of distinguished Laplacians and sub-Laplacians on the unit sphere in arbitrary dimension, and are instrumental in the proof, discussed in a companion paper, of sharp multiplier theorems for those operators.
Accepted:
Published online:
Valentina Casarino 1; Paolo Ciatti 2; Alessio Martini 3
@article{CRMATH_2021__359_10_1239_0, author = {Valentina Casarino and Paolo Ciatti and Alessio Martini}, title = {Uniform pointwise estimates for ultraspherical polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {1239--1250}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.255}, language = {en}, }
TY - JOUR AU - Valentina Casarino AU - Paolo Ciatti AU - Alessio Martini TI - Uniform pointwise estimates for ultraspherical polynomials JO - Comptes Rendus. Mathématique PY - 2021 SP - 1239 EP - 1250 VL - 359 IS - 10 PB - Académie des sciences, Paris DO - 10.5802/crmath.255 LA - en ID - CRMATH_2021__359_10_1239_0 ER -
Valentina Casarino; Paolo Ciatti; Alessio Martini. Uniform pointwise estimates for ultraspherical polynomials. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1239-1250. doi : 10.5802/crmath.255. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.255/
[1] NIST Digital Library of Mathematical Functions (https://dlmf.nist.gov)
[2] Mean convergence of expansions in Laguerre und Hermite series, Am. J. Math., Volume 87 (1965), pp. 695-708 | DOI | Zbl
[3] Harmonic function theory, Graduate Texts in Mathematics, 137, Springer, 2001 | DOI
[4] Weighted estimates for the Helmholtz equation and some applications, J. Funct. Anal., Volume 150 (1997) no. 2, pp. 356-382 | DOI | MR
[5] Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions, SIAM J. Math. Anal., Volume 17 (1986), pp. 422-450 | DOI | MR | Zbl
[6] Weighted eigenfunction estimates with applications to compressed sensing, SIAM J. Math. Anal., Volume 44 (2012) no. 5, pp. 3481-3501 | DOI | MR | Zbl
[7] From refined estimates for spherical harmonics to a sharp multiplier theorem on the Grushin sphere, Adv. Math., Volume 350 (2019), pp. 816-859 | DOI | MR | Zbl
[8] Weighted spectral cluster bounds and a sharp multiplier theorem for ultraspherical Grushin operators (2021) (to appear in Int. Math. Res. Not., https://doi.org/10.1093/imrn/rnab007)
[9] A robust approach to sharp multiplier theorems for Grushin operators, Trans. Am. Math. Soc., Volume 373 (2020) no. 11, pp. 7533-7574 | DOI | MR | Zbl
[10] Higher Transcendental Functions. Vol. II, Robert E. Krieger Publishing Company, 1981
[11] Subelliptic eigenvalue problems, Harmonic analysis. Conference on harmonic analysis in honor of Antoni Zygmund (Chicago, 1981) (The Wadsworth Mathematics Series), Wadsworth International Group, 1983, pp. 590-606 | Zbl
[12] Spectral cluster bounds for orthonormal systems and oscillatory integral operators in Schatten spaces, Adv. Math., Volume 317 (2017), pp. 157-192 | DOI | MR | Zbl
[13] Inequalities for Jacobi polynomials, Ramanujan J., Volume 33 (2014) no. 2, pp. 227-246 | DOI | MR | Zbl
[14] The spectral function of an elliptic operator, Acta Math., Volume 121 (1968), pp. 193-218 | DOI | MR | Zbl
[15] Almost everywhere convergence of Bochner–Riesz means on Heisenberg-type groups, J. Lond. Math. Soc., Volume 103 (2021) no. 3, pp. 1066-1119 | DOI | MR | Zbl
[16] Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator, Adv. Math., Volume 333 (2018), pp. 796-821 | DOI | MR | Zbl
[17] On the Erdélyi–Magnus–Nevai conjecture for Jacobi polynomials, Constr. Approx., Volume 28 (2008) no. 2, pp. 113-125 | DOI | Zbl
[18] On approximation of ultraspherical polynomials in the oscillatory region, J. Approx. Theory, Volume 222 (2017), pp. 143-156 | DOI | MR | Zbl
[19] Bessel functions: monotonicity and bounds, J. Lond. Math. Soc., Volume 61 (2000) no. 1, pp. 197-215 | DOI | MR | Zbl
[20] Inequalities for Legendre functions and Gegenbauer functions, J. Approx. Theory, Volume 64 (1991) no. 2, pp. 226-234 | DOI | MR | Zbl
[21] Inequalities for the associated Legendre functions, J. Approx. Theory, Volume 95 (1998) no. 2, pp. 178-193 | DOI | MR | Zbl
[22] Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type (2019) (to appear in J. Eur. Math. Soc., https://arxiv.org/abs/1812.02671)
[23] Some remarks on zeros of cylinder functions, SIAM J. Math. Anal., Volume 15 (1984), pp. 1231-1233 | DOI | MR | Zbl
[24] Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal., Volume 25 (1994) no. 2, pp. 602-614 | DOI | MR | Zbl
[25] Asymptotics and Special Functions, Computer Science and Applied Mathematics, Academic Press Inc., 1974
[26] Legendre functions with both parameters large, Philos. Trans. R. Soc. Lond., Ser. A, Volume 278 (1975), pp. 175-185 | MR | Zbl
[27] Second order linear differential equations with two turning points, Philos. Trans. R. Soc. Lond., Ser. A, Volume 278 (1975), pp. 137-174 | MR | Zbl
[28] Sparse recovery for spherical harmonic expansions (2011) (SampTA 2011 Conference Proceedings https://arxiv.org/abs/1102.4097)
[29] On the boundedness of functions of (pseudo-) differential operators on compact manifolds, Duke Math. J., Volume 59 (1989) no. 3, pp. 709-736 | MR | Zbl
[30] Concerning the norm of spectral clusters for second-order elliptic operators on compact manifolds, J. Funct. Anal., Volume 77 (1988) no. 1, pp. 123-138 | DOI | MR | Zbl
[31] Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Princeton University Press, 1971
[32] Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975 | MR
[33] Lectures on Hermite and Laguerre Expansions, Mathematical Notes, 42, Princeton University Press, 1993 | DOI
[34] Eigenfunction expansions associated with second-order differential equations. Part I, Clarendon Press, 1962
[35] Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, 22, American Mathematical Society, 1968 | DOI
Cited by Sources:
Comments - Policy