Dans ce travail, nous analysons le spectre d’un opérateur dégénéré correspondant à l’équation de la chaleur stationnaire dans un milieu composite -périodique ayant deux composantes avec des coefficients de conductivité à fort contraste. Nous montrons que bien que soit un opérateur auto-adjoint à résolvante compacte, sa limite lorsque la période tend vers est un opérateur non auto-adjoint dont le spectre est borné par des constantes positives ne dépendant que de la première valeur propre du Laplacien uni-dimensionnel dans et de la première valeur propre du Laplacien bi-dimensionnel avec conditions au bord mixtes sur la cellule de référence . Nous montrons en outre que le problème homogénéisé et le problème limite obtenu après réduction de dimension intervenant localement sont identiques, à une condition aux limites près, la condition de Neumann homogène sur le bord de dans le problème devant être remplacée dans le problème homogénéisé par une condition de périodicité.
In this paper we perform the analysis of the spectrum of a degenerate operator corresponding to the stationary heat equation in a -periodic composite medium having two components with high contrast diffusivity. We prove that although is a self-adjoint operator with compact resolvent, its limit when the size of the medium tends to zero is a non self-adjoint operator whose spectrum is bounded by positive constants depending on the first eigenvalue of the one-dimensional Laplacian in and the first eigenvalue of the bi-dimensional Laplacian with mixed boundary conditions on the representative cell . Furthermore, we show that the homogenized problem and the one-dimensional limit problem obtained by the reduction of dimension occurring locally are identical except for one boundary condition which is a homogeneous Neumann condition on the boundary of in the problem and a periodicity condition in the case of homogenization.
Révisé le :
Accepté le :
Publié le :
Ali Sili 1
@article{CRMATH_2022__360_G1_1_0, author = {Ali Sili}, title = {On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--23}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.263}, language = {en}, }
TY - JOUR AU - Ali Sili TI - On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems JO - Comptes Rendus. Mathématique PY - 2022 SP - 1 EP - 23 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.263 LA - en ID - CRMATH_2022__360_G1_1_0 ER -
%0 Journal Article %A Ali Sili %T On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems %J Comptes Rendus. Mathématique %D 2022 %P 1-23 %V 360 %I Académie des sciences, Paris %R 10.5802/crmath.263 %G en %F CRMATH_2022__360_G1_1_0
Ali Sili. On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1-23. doi : 10.5802/crmath.263. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.263/
[1] Homogenization and Two-Scale Convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518 | DOI | MR | Zbl
[2] Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Eng., Volume 187 (2000) no. 1-2, pp. 91-117 | DOI | MR | Zbl
[3] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 823-836 | DOI | MR | Zbl
[4] A variational approach to double-porosity problems, Asymptotic Anal., Volume 39 (2004) no. 3-4, pp. 281-300 | MR | Zbl
[5] Analyse Fonctionnelle, Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, 1983
[6] A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, Partial differential equations (Banach Center Publications), Volume 19, Polish Scientific Publishers, 1984, pp. 59-78 | Zbl
[7] Two-scale convergence for nonlinear Dirichlet problems, Proc. R. Soc. Edinb., Sect. A, Math., Volume 130 (2000) no. 2, pp. 249-276 | DOI
[8] The effective equilibrium law for a highly heterogeneous elastic periodic medium, Proc. R. Soc. Edinb., Sect. A, Math., Volume 143 (2013) no. 3, pp. 507-561 | DOI | MR | Zbl
[9] Homogenization of reticulated structures, Applied Mathematical Sciences, 136, Springer, 1999 | DOI
[10] Homogenization of highly oscillating boundaries with strongly contrasting diffusivity, SIAM J. Math. Anal., Volume 47 (2015) no. 3, pp. 1671-1692 | DOI | MR | Zbl
[11] Homogenization of elliptic eigenvalue problems. I, II, Appl. Math. Optim., Volume 5 (1979), p. 153-167, 197–216 | DOI | MR | Zbl
[12] Two-dimensional approximation of eigenvalue problems in shell theory: Flexural shells, Chin. Ann. Math., Ser. B, Volume 21 (2000) no. 1, pp. 1-16 | DOI | MR | Zbl
[13] Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. Ser., Volume 10 (1962), pp. 1-128
[14] Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications, Recherches en Mathématiques Appliquées, 19, Masson, 1991
[15] The band-gap structures of the spectrum in a periodic medium of Masonry type, Netw. Heterog. Media, Volume 15 (2020) no. 4, pp. 555-580 | DOI | MR | Zbl
[16] Asymptotics of the Neumann spectral problem solution in a domain of “thick comb” type, J. Math. Sci., New York, Volume 85 (1997) no. 6, pp. 2326-2346 | DOI
[17] A remark about the periodic homogenization of certain composite fibered media, Netw. Heterog. Media, Volume 15 (2020) no. 1, pp. 125-142 | DOI | MR | Zbl
[18] A General Convergence Result for a Functional Related to the Theory of Homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-623 | DOI | MR | Zbl
[19] Multi-scale modelling for structures and composites, Springer, 2005
[20] Nonlocal effects by homogenization or 3D-1D dimension reduction in elastic materials reinforced by stiff fibers, J. Differ. Equations, Volume 260 (2016) no. 3, pp. 2026-2059 | DOI | Zbl
[21] Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 3, pp. 329-353 | DOI | MR | Zbl
[22] A diffusion equation through a highly heterogeneous medium, Appl. Anal., Volume 89 (2010) no. 6, pp. 893-904 | DOI | MR | Zbl
[23] Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci., Math. Sci., Volume 90 (1981) no. 3, pp. 239-271 | DOI | MR | Zbl
[24] On an extension and application of the two-scale convergence method, Mat. Sb., Volume 191 (2000) no. 7, pp. 973-1014 | DOI | MR
[25] Homogenization of differential operators and integral functionals, Springer, 1994 (translated from the Russian by G.A. Yosifian)
Cité par Sources :
Commentaires - Politique