In this paper we perform the analysis of the spectrum of a degenerate operator corresponding to the stationary heat equation in a -periodic composite medium having two components with high contrast diffusivity. We prove that although is a self-adjoint operator with compact resolvent, its limit when the size of the medium tends to zero is a non self-adjoint operator whose spectrum is bounded by positive constants depending on the first eigenvalue of the one-dimensional Laplacian in and the first eigenvalue of the bi-dimensional Laplacian with mixed boundary conditions on the representative cell . Furthermore, we show that the homogenized problem and the one-dimensional limit problem obtained by the reduction of dimension occurring locally are identical except for one boundary condition which is a homogeneous Neumann condition on the boundary of in the problem and a periodicity condition in the case of homogenization.
Dans ce travail, nous analysons le spectre d’un opérateur dégénéré correspondant à l’équation de la chaleur stationnaire dans un milieu composite -périodique ayant deux composantes avec des coefficients de conductivité à fort contraste. Nous montrons que bien que soit un opérateur auto-adjoint à résolvante compacte, sa limite lorsque la période tend vers est un opérateur non auto-adjoint dont le spectre est borné par des constantes positives ne dépendant que de la première valeur propre du Laplacien uni-dimensionnel dans et de la première valeur propre du Laplacien bi-dimensionnel avec conditions au bord mixtes sur la cellule de référence . Nous montrons en outre que le problème homogénéisé et le problème limite obtenu après réduction de dimension intervenant localement sont identiques, à une condition aux limites près, la condition de Neumann homogène sur le bord de dans le problème devant être remplacée dans le problème homogénéisé par une condition de périodicité.
Revised:
Accepted:
Published online:
Ali Sili 1
@article{CRMATH_2022__360_G1_1_0, author = {Ali Sili}, title = {On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1--23}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.263}, language = {en}, }
TY - JOUR AU - Ali Sili TI - On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems JO - Comptes Rendus. Mathématique PY - 2022 SP - 1 EP - 23 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.263 LA - en ID - CRMATH_2022__360_G1_1_0 ER -
%0 Journal Article %A Ali Sili %T On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems %J Comptes Rendus. Mathématique %D 2022 %P 1-23 %V 360 %I Académie des sciences, Paris %R 10.5802/crmath.263 %G en %F CRMATH_2022__360_G1_1_0
Ali Sili. On the limit spectrum of a degenerate operator in the framework of periodic homogenization or singular perturbation problems. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1-23. doi : 10.5802/crmath.263. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.263/
[1] Homogenization and Two-Scale Convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518 | DOI | MR | Zbl
[2] Homogenization of a spectral problem in neutronic multigroup diffusion, Comput. Methods Appl. Mech. Eng., Volume 187 (2000) no. 1-2, pp. 91-117 | DOI | MR | Zbl
[3] Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 823-836 | DOI | MR | Zbl
[4] A variational approach to double-porosity problems, Asymptotic Anal., Volume 39 (2004) no. 3-4, pp. 281-300 | MR | Zbl
[5] Analyse Fonctionnelle, Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, 1983
[6] A perturbation problem with two small parameters in the framework of the heat conduction of a fiber reinforced body, Partial differential equations (Banach Center Publications), Volume 19, Polish Scientific Publishers, 1984, pp. 59-78 | Zbl
[7] Two-scale convergence for nonlinear Dirichlet problems, Proc. R. Soc. Edinb., Sect. A, Math., Volume 130 (2000) no. 2, pp. 249-276 | DOI
[8] The effective equilibrium law for a highly heterogeneous elastic periodic medium, Proc. R. Soc. Edinb., Sect. A, Math., Volume 143 (2013) no. 3, pp. 507-561 | DOI | MR | Zbl
[9] Homogenization of reticulated structures, Applied Mathematical Sciences, 136, Springer, 1999 | DOI
[10] Homogenization of highly oscillating boundaries with strongly contrasting diffusivity, SIAM J. Math. Anal., Volume 47 (2015) no. 3, pp. 1671-1692 | DOI | MR | Zbl
[11] Homogenization of elliptic eigenvalue problems. I, II, Appl. Math. Optim., Volume 5 (1979), p. 153-167, 197–216 | DOI | MR | Zbl
[12] Two-dimensional approximation of eigenvalue problems in shell theory: Flexural shells, Chin. Ann. Math., Ser. B, Volume 21 (2000) no. 1, pp. 1-16 | DOI | MR | Zbl
[13] Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. Ser., Volume 10 (1962), pp. 1-128
[14] Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications, Recherches en Mathématiques Appliquées, 19, Masson, 1991
[15] The band-gap structures of the spectrum in a periodic medium of Masonry type, Netw. Heterog. Media, Volume 15 (2020) no. 4, pp. 555-580 | DOI | MR | Zbl
[16] Asymptotics of the Neumann spectral problem solution in a domain of “thick comb” type, J. Math. Sci., New York, Volume 85 (1997) no. 6, pp. 2326-2346 | DOI
[17] A remark about the periodic homogenization of certain composite fibered media, Netw. Heterog. Media, Volume 15 (2020) no. 1, pp. 125-142 | DOI | MR | Zbl
[18] A General Convergence Result for a Functional Related to the Theory of Homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-623 | DOI | MR | Zbl
[19] Multi-scale modelling for structures and composites, Springer, 2005
[20] Nonlocal effects by homogenization or 3D-1D dimension reduction in elastic materials reinforced by stiff fibers, J. Differ. Equations, Volume 260 (2016) no. 3, pp. 2026-2059 | DOI | Zbl
[21] Homogenization of a nonlinear monotone problem in an anisotropic medium, Math. Models Methods Appl. Sci., Volume 14 (2004) no. 3, pp. 329-353 | DOI | MR | Zbl
[22] A diffusion equation through a highly heterogeneous medium, Appl. Anal., Volume 89 (2010) no. 6, pp. 893-904 | DOI | MR | Zbl
[23] Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci., Math. Sci., Volume 90 (1981) no. 3, pp. 239-271 | DOI | MR | Zbl
[24] On an extension and application of the two-scale convergence method, Mat. Sb., Volume 191 (2000) no. 7, pp. 973-1014 | DOI | MR
[25] Homogenization of differential operators and integral functionals, Springer, 1994 (translated from the Russian by G.A. Yosifian)
Cited by Sources:
Comments - Policy