On revoit les équations d’Einstein de la relativité générale dans le vide comme équations d’optimalité d’une sorte de problème de transport optimal quadratique généralisé.
Revised:
Accepted:
Published online:
Yann Brenier 1

@article{CRMATH_2022__360_G1_25_0, author = {Yann Brenier}, title = {Une interpr\'etation variationnelle de la relativit\'e g\'en\'erale dans le vide en termes de transport optimal}, journal = {Comptes Rendus. Math\'ematique}, pages = {25--33}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.275}, language = {fr}, }
TY - JOUR AU - Yann Brenier TI - Une interprétation variationnelle de la relativité générale dans le vide en termes de transport optimal JO - Comptes Rendus. Mathématique PY - 2022 SP - 25 EP - 33 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.275 LA - fr ID - CRMATH_2022__360_G1_25_0 ER -
Yann Brenier. Une interprétation variationnelle de la relativité générale dans le vide en termes de transport optimal. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 25-33. doi : 10.5802/crmath.275. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.275/
[1] Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2008 | Zbl
[2] A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem, Numer. Math., Volume 84 (2000) no. 3, pp. 375-393 | DOI | MR | Zbl
[3] A variational approach to complex Monge–Ampère equations, Publ. Math., Inst. Hautes Étud. Sci., Volume 117 (2013), pp. 179-245 | DOI | Numdam | Zbl
[4] Complex Legendre duality, Am. J. Math., Volume 142 (2020) no. 1, pp. 323-339 | DOI | MR | Zbl
[5] Extended Monge-Kantorovich theory, Optimal transportation and applications. Lectures given at the C.I.M.E. summer school, Martina Franca, Italy, September 2–8, 2001 (Luis A. Caffarelli, ed.) (Lecture Notes in Mathematics), Volume 1813, Springer, 2003, pp. 91-121 | MR | Zbl
[6] Hydrodynamic structure of the augmented Born–Infeld equations, Arch. Ration. Mech. Anal., Volume 172 (2004) no. 1, pp. 65-91 | DOI | MR | Zbl
[7] On optimal transport of matrix-valued measures, SIAM J. Math. Anal., Volume 52 (2020) no. 3, pp. 2849-2873 | DOI | MR | Zbl
[8] Analyse fonctionnelle appliquée, Masson, 1982
[9] Harmonic maps with defects, Commun. Math. Phys., Volume 107 (1986), pp. 649-705 | DOI | MR | Zbl
[10] Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance, J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1810-1869 | DOI | MR | Zbl
[11] On the matrix Monge–Kantorovich problem, Eur. J. Appl. Math., Volume 31 (2020) no. 4, pp. 574-600 | DOI | MR
[12] The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, 41, Princeton University Press, 1993 | Zbl
[13] A reconstruction of the initial conditions of the Universe by optimal mass transportation, Nature, Volume 417 (2002), pp. 260-262 | DOI
[14] First order asymptotics of matrix integrals ; a rigorous approach towards the understanding of matrix models, Commun. Math. Phys., Volume 244 (2004) no. 3, pp. 527-569 | DOI | MR | Zbl
[15] Trilinear compensated compactness and Burnett’s conjecture in general relativity (2019) (https://arxiv.org/abs/1907.10743)
[16] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[17] Harmonic mappings valued in the Wasserstein space, J. Funct. Anal., Volume 277 (2019) no. 3, pp. 688-785 | DOI | MR | Zbl
[18] Displacement convexity of Boltzmann’s entropy characterizes the strong energy condition from general relativity, Camb. J. Math., Volume 8 (2020) no. 3, pp. 609-681 | DOI | MR | Zbl
[19] An optimal transport formulation of the Einstein equations of general relativity (2018) (https://arxiv.org/abs/1810.13309v1)
[20] Eulerian calculus for the contraction in the Wasserstein distance, SIAM J. Math. Anal., Volume 37 (2005) no. 4, pp. 1227-1255 | DOI | MR | Zbl
[21] Quantum entropic regularization of matrix-valued optimal transport, Eur. J. Appl. Math., Volume 30 (2019) no. 6, pp. 1079-1102 | DOI | MR | Zbl
[22] Mass Transportation Problems. Vol. 1 : Theory. Vol. 2 : Applications, Springer Series in Statistics, Springer, 1998 | Zbl
[23] Optimal transport for applied mathematicians, Progress in Nonlinear Differential Equations and their Applications, 87, Birkhäuser/Springer, 2015 | DOI | Zbl
[24] On the geometry of metric measure spaces, Acta Math., Volume 196 (2006) no. 1, pp. 65-177 | DOI | MR | Zbl
[25] Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003 | Zbl
Cited by Sources:
Comments - Policy