We construct a relation between the leading pre-factor function and the singulants , , and recurrence relation of the singulants at higher levels for the solution of singularly-perturbed first-order ordinary general differential equation with a small parameter via the method of multi-level asymptotics. The particular equation is chosen due to its appearance at every level of multi-level asymptotic approach for the first-order differential equations. By the relations derived by the asymptotic analysis from the equation, Stokes and anti-Stokes lines can be extracted more quickly and so which exponentials of the expansions are actually contributed in each sector of the complex plane can be deduced faster. Multi-level asymptotic analysis of the first-order singular equations and the Stokes phenomenon may be done straightaway from the higher levels of the analysis.
Accepté le :
Publié le :
Fatih Say 1
@article{CRMATH_2021__359_10_1267_0, author = {Fatih Say}, title = {First-order general differential equation for multi-level asymptotics at higher levels and recurrence relationship of singulants}, journal = {Comptes Rendus. Math\'ematique}, pages = {1267--1278}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.264}, language = {en}, }
TY - JOUR AU - Fatih Say TI - First-order general differential equation for multi-level asymptotics at higher levels and recurrence relationship of singulants JO - Comptes Rendus. Mathématique PY - 2021 SP - 1267 EP - 1278 VL - 359 IS - 10 PB - Académie des sciences, Paris DO - 10.5802/crmath.264 LA - en ID - CRMATH_2021__359_10_1267_0 ER -
%0 Journal Article %A Fatih Say %T First-order general differential equation for multi-level asymptotics at higher levels and recurrence relationship of singulants %J Comptes Rendus. Mathématique %D 2021 %P 1267-1278 %V 359 %N 10 %I Académie des sciences, Paris %R 10.5802/crmath.264 %G en %F CRMATH_2021__359_10_1267_0
Fatih Say. First-order general differential equation for multi-level asymptotics at higher levels and recurrence relationship of singulants. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1267-1278. doi : 10.5802/crmath.264. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.264/
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables (Milton Abramowitz; Irene A. Stegun, eds.), Dover Publications, 1992, xiv+1046 pages (Reprint of the 1972 edition) | MR
[2] Stokes’ phenomenon; smoothing a Victorian discontinuity, Publ. Math., Inst. Hautes Étud. Sci. (1988) no. 68, pp. 211-221 | DOI | Numdam | MR | Zbl
[3] Uniform asymptotic smoothing of Stokes’s discontinuities, Proc. R. Soc. Lond., Ser. A, Volume 422 (1989) no. 1862, pp. 7-21 | MR
[4] Waves near Stokes lines, Proc. R. Soc. Lond., Ser. A, Volume 427 (1990) no. 1873, pp. 265-280 | MR | Zbl
[5] Stokes’s phenomenon for superfactorial asymptotic series, Proc. R. Soc. Lond., Ser. A, Volume 435 (1991) no. 1894, pp. 437-444 | DOI | MR | Zbl
[6] Hyperasymptotics, Proc. R. Soc. Lond., Ser. A, Volume 430 (1990) no. 1880, pp. 653-668 | DOI | MR | Zbl
[7] Exponential asymptotics of a fifth-order partial differential equation, Eur. J. Appl. Math., Volume 16 (2005) no. 5, pp. 647-681 | DOI | MR | Zbl
[8] A comparison of numerical and analytical methods for the reduced wave equation with multiple spatial scales, Appl. Numer. Math., Volume 7 (1991) no. 6, pp. 453-479 | DOI | MR | Zbl
[9] A hyperasymptotic perturbative method for computing the radiation coefficient for weakly nonlocal solitary waves, J. Comput. Phys., Volume 120 (1995) no. 1, pp. 15-32 | DOI | Zbl
[10] The devil’s invention: asymptotic, superasymptotic and hyperasymptotic series, Acta Appl. Math., Volume 56 (1999) no. 1, pp. 1-98 | DOI | MR | Zbl
[11] Hyperasymptotics and the linear boundary layer problem: why asymptotic series diverge, SIAM Rev., Volume 47 (2005) no. 3, pp. 553-575 | DOI | MR | Zbl
[12] On the non-universality of the error function in the smoothing of Stokes discontinuities, Proc. R. Soc. Lond., Ser. A, Volume 452 (1996) no. 1953, pp. 2225-2230 | DOI | MR | Zbl
[13] Why is a shock not a caustic? The higher-order Stokes phenomenon and smoothed shock formation, Nonlinearity, Volume 20 (2007) no. 10, pp. 2425-2452 | DOI | MR | Zbl
[14] Exponential asymptotics and Stokes lines in nonlinear ordinary differential equations, Proc. R. Soc. Lond., Ser. A, Volume 454 (1998) no. 1978, pp. 2733-2755 | DOI | MR | Zbl
[15] On the theory of complex rays, SIAM Rev., Volume 41 (1999) no. 3, pp. 417-509 | DOI | MR | Zbl
[16] Exponential asymptotics and Stokes lines in a partial differential equation, Proc. R. Soc. Lond., Ser. A, Volume 461 (2005) no. 2060, pp. 2385-2421 | DOI | MR | Zbl
[17] Exponential asymptotics for thin film rupture, SIAM J. Appl. Math., Volume 73 (2013) no. 1, pp. 232-253 | DOI | MR | Zbl
[18] Mémoire sur l’approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série., J. Math. Pures Appl., Volume 4 (1878), pp. 5-56 | Zbl
[19] Asymptotic expansions: their derivation and interpretation, Academic Press Inc., 1973, xv+521 pages | MR
[20] The Stokes phenomenon and certain th order differential equations. II. The Stokes phenomenon, Proc. Camb. Philos. Soc., Volume 53 (1957), pp. 419-441 | DOI | MR | Zbl
[21] Perturbation methods, Cambridge Texts in Applied Mathematics, Cambridge University Press, 1991, xii+160 pages | DOI | MR
[22] On the higher-order Stokes phenomenon, Proc. R. Soc. Lond., Ser. A, Volume 460 (2004) no. 2048, pp. 2285-2303 | DOI | MR | Zbl
[23] Exponentially accurate solution tracking for nonlinear ODEs, the higher order Stokes phenomenon and double transseries resummation, Nonlinearity, Volume 25 (2012) no. 6, pp. 1559-1584 | DOI | MR | Zbl
[24] Nonlinear -Stokes phenomena for q-Painlevé I, J. Phys. A, Math. Theor., Volume 52 (2019) no. 6, 065204, 30 pages | Zbl
[25] Asymptotics beyond all orders and Stokes lines in nonlinear differential-difference equations, Eur. J. Appl. Math., Volume 12 (2001) no. 4, pp. 433-463 | DOI | MR | Zbl
[26] Exponential asymptotics in unsteady and three-dimensional flows, Ph. D. Thesis, University of Oxford (2013)
[27] Error estimates for asymptotic representations of integrals, J. Aust. Math. Soc., Volume 13 (1972), pp. 395-410 | DOI | MR | Zbl
[28] Smoothing of Stokes discontinuities, Proc. R. Soc. Lond., Ser. A, Volume 437 (1992) no. 1900, pp. 343-354 | DOI | MR | Zbl
[29] Stokes phenomenon and matched asymptotic expansions, SIAM J. Appl. Math., Volume 55 (1995) no. 6, pp. 1469-1483 | DOI | MR | Zbl
[30] Asymptotics and special functions, A K Peters, 1997, xviii+572 pages (Reprint of the 1974 original) | DOI | MR
[31] NIST Digital Library of Mathematical Functions (Frank W. J. Olver; Adri B. Olde Daalhuis; Daniel W. Lozier; Barry I. Schneider; Ronald F. Boisvert; Charles W. Clark; Bruce R. Miller; Bonita V. Saunders; Howard S. Cohl; Marjorie A. McClain, eds.) (http://dlmf.nist.gov/, Release 1.1.3 of 2021-09-15)
[32] Exponential asymptotics: multi-level asymptotics of model problems, Ph. D. Thesis, University of Nottingham (2016)
[33] E: Airy Function, Quantum Optics in Phase Space, Wiley Online Library, 2001, pp. 621-627
[34] On the discontinuity of arbitrary constants that appear in divergent developments, Trans. Camb. Philos. Soc., Volume 10 (1864), pp. 106-128
Cité par Sources :
Commentaires - Politique