In dimension two, we investigate a free energy and the ground state energy of the Schrödinger–Poisson system coupled with a logarithmic nonlinearity in terms of underlying functional inequalities which take into account the scaling invariances of the problem. Such a system can be considered as a nonlinear Schrödinger equation with a cubic but nonlocal Poisson nonlinearity, and a local logarithmic nonlinearity. Both cases of repulsive and attractive forces are considered. We also assume that there is an external potential with minimal growth at infinity, which turns out to have a logarithmic growth. Our estimates rely on new logarithmic interpolation inequalities which combine logarithmic Hardy–Littlewood–Sobolev and logarithmic Sobolev inequalities. The two-dimensional model appears as a limit case of more classical problems in higher dimensions.
Accepted:
Published online:
Jean Dolbeault 1; Rupert L. Frank 2; Louis Jeanjean 3
@article{CRMATH_2021__359_10_1279_0, author = {Jean Dolbeault and Rupert L. Frank and Louis Jeanjean}, title = {Logarithmic estimates for mean-field models in dimension two and the {Schr\"odinger{\textendash}Poisson} system}, journal = {Comptes Rendus. Math\'ematique}, pages = {1279--1293}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.272}, language = {en}, }
TY - JOUR AU - Jean Dolbeault AU - Rupert L. Frank AU - Louis Jeanjean TI - Logarithmic estimates for mean-field models in dimension two and the Schrödinger–Poisson system JO - Comptes Rendus. Mathématique PY - 2021 SP - 1279 EP - 1293 VL - 359 IS - 10 PB - Académie des sciences, Paris DO - 10.5802/crmath.272 LA - en ID - CRMATH_2021__359_10_1279_0 ER -
%0 Journal Article %A Jean Dolbeault %A Rupert L. Frank %A Louis Jeanjean %T Logarithmic estimates for mean-field models in dimension two and the Schrödinger–Poisson system %J Comptes Rendus. Mathématique %D 2021 %P 1279-1293 %V 359 %N 10 %I Académie des sciences, Paris %R 10.5802/crmath.272 %G en %F CRMATH_2021__359_10_1279_0
Jean Dolbeault; Rupert L. Frank; Louis Jeanjean. Logarithmic estimates for mean-field models in dimension two and the Schrödinger–Poisson system. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1279-1293. doi : 10.5802/crmath.272. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.272/
[1] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 1, pp. 213-242 | DOI | MR | Zbl
[2] Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality, Ann. Math., Volume 138 (1993) no. 1, pp. 213-242 | DOI | MR | Zbl
[3] Scaling properties of functionals and existence of constrained minimizers, J. Funct. Anal., Volume 261 (2011) no. 9, pp. 2486-2507 | DOI | MR | Zbl
[4] On a Vlasov–Schrödinger–Poisson model, Commun. Partial Differ. Equations, Volume 29 (2004) no. 1-2, pp. 173-206 | DOI | MR | Zbl
[5] Nonlinear wave mechanics, Ann. Phys., Volume 100 (1976) no. 1-2, pp. 62-93 | DOI | MR
[6] Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., Volume 2006 (2006) no. 44, pp. 1-32 | MR | Zbl
[7] A functional framework for the Keller–Segel system: logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 21-22, pp. 949-954 | DOI | MR | Zbl
[8] Asymptotic Estimates for the Parabolic-Elliptic Keller–Segel Model in the Plane, Commun. Partial Differ. Equations, Volume 39 (2014) no. 5, pp. 806-841 | DOI | MR | Zbl
[9] Superadditivity of Fisher’s information and logarithmic Sobolev inequalities, J. Funct. Anal., Volume 101 (1991) no. 1, pp. 194-211 | DOI | MR | Zbl
[10] Hardy–Littlewood–Sobolev inequalities via fast diffusion flows, Proc. Natl. Acad. Sci. USA, Volume 107 (2010) no. 46, pp. 19696-19701 | DOI | MR | Zbl
[11] Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on , Geom. Funct. Anal., Volume 2 (1992) no. 1, pp. 90-104 | DOI | MR | Zbl
[12] Universal dynamics for the defocusing logarithmic Schrödinger equation, Duke Math. J., Volume 167 (2018) no. 9, pp. 1761-1801 | DOI | Zbl
[13] solutions to the Schrödinger–Poisson system: existence, uniqueness, time behaviour, and smoothing effects, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 8, pp. 1051-1083 | DOI | MR | Zbl
[14] Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., Theory Methods Appl., Volume 7 (1983) no. 10, pp. 1127-1140 | DOI | MR | Zbl
[15] Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, American Mathematical Society, 2003, xiv+323 pages | DOI | MR
[16] Équations d’évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse, Math., Volume 2 (1980) no. 1, pp. 21-51 | DOI | MR | Zbl
[17] Stationary Waves with Prescribed -Norm for the Planar Schrödinger–Poisson System, SIAM J. Math. Anal., Volume 51 (2019) no. 4, pp. 3533-3568 | DOI | Zbl
[18] On the planar Schrödinger–Poisson system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 1, pp. 169-197 | DOI | Zbl
[19] A new entropy power inequality, IEEE Trans. Inf. Theory, Volume 31 (1985) no. 6, pp. 751-760 | DOI | MR | Zbl
[20] On the logarithmic Schrödinger equation, Commun. Contemp. Math., Volume 16 (2014) no. 2, 1350032, 15 pages | DOI | MR | Zbl
[21] Sobolev and Hardy–Littlewood–Sobolev inequalities: duality and fast diffusion, Math. Res. Lett., Volume 18 (2011) no. 6, pp. 1037-1050 | DOI | MR | Zbl
[22] The Moser–Trudinger–Onofri inequality, Chin. Ann. Math., Ser. B, Volume 36 (2015) no. 5, pp. 777-802 | DOI | MR | Zbl
[23] Sobolev and Hardy–Littlewood–Sobolev inequalities, J. Differ. Equations, Volume 257 (2014) no. 6, pp. 1689-1720 | DOI | MR | Zbl
[24] Generalized Logarithmic Hardy–Littlewood–Sobolev Inequality, Int. Math. Res. Not., Volume 12 (2019), pp. 1-13 | DOI
[25] Optimal critical mass in the two-dimensional Keller–Segel model in , C. R. Math. Acad. Sci. Paris, Volume 339 (2004) no. 9, pp. 611-616 | DOI | MR | Zbl
[26] Stability results for logarithmic Sobolev and Gagliardo–Nirenberg inequalities, Int. Math. Res. Not. (2016) no. 2, pp. 473-498 | DOI | MR | Zbl
[27] Partially alternate derivation of a result of Nelson, J. Math. Phys., Volume 10 (1969), pp. 50-52 | DOI | Zbl
[28] Spherical reflection positivity and the Hardy–Littlewood–Sobolev inequality, Concentration, functional inequalities and isoperimetry (Contemporary Mathematics), Volume 545, American Mathematical Society, 2011, pp. 89-102 | DOI | MR | Zbl
[29] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | MR
[30] Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, 2001, xxii+346 pages | DOI | MR
[31] Über eine mit den Bessel’schen Functionen verwandte Function, Math. Ann., Volume 9 (1875) no. 3, pp. 425-444 | DOI | Zbl
[32] Zur Theorie der Bessel’schen Functionen, Math. Ann., Volume 16 (1880) no. 2, pp. 183-208 | DOI | MR | Zbl
[33] Uniqueness and radial symmetry of minimizers for a nonlocal variational problem, Commun. Pure Appl. Anal., Volume 18 (2019) no. 5, pp. 2265-2282 | DOI | MR
[34] On a rigorous interpretation of the quantum Schrödinger–Langevin operator in bounded domains with applications, J. Math. Anal. Appl., Volume 383 (2011) no. 2, pp. 365-378 | DOI | Zbl
[35] On the positivity of the effective action in a theory of random surfaces, Commun. Math. Phys., Volume 86 (1982) no. 3, pp. 321-326 | DOI | MR | Zbl
[36] Asymptotic decay estimates for the repulsive Schrödinger–Poisson system, Math. Methods Appl. Sci., Volume 27 (2004) no. 4, pp. 371-380 | DOI | MR | Zbl
[37] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. and Control, Volume 2 (1959), pp. 101-112 | DOI | MR | Zbl
[38] A short proof of the “concavity of entropy power”, IEEE Trans. Inf. Theory, Volume 46 (2000) no. 4, pp. 1695-1696 | DOI | MR | Zbl
[39] Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982/83) no. 4, pp. 567-576 | DOI | MR | Zbl
[40] Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Am. Math. Soc., Volume 237 (1978), pp. 255-269 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy