Comptes Rendus
Géométrie algébrique
Some examples of algebraic surfaces with canonical map of degree 20
Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1145-1153.

In this note, we construct two minimal surfaces of general type with geometric genus pg=3, irregularity q=0, self-intersection of the canonical divisor K2=20,24 such that their canonical map is of degree 20. In one of these surfaces, the canonical linear system has a non-trivial fixed part. These surfaces, to our knowledge, are the first examples of minimal surfaces of general type with canonical map of degree 20.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.267
Classification : 14J29

Nguyen Bin 1

1 Mathematics Division, National Center for Theoretical Sciences, Taiwan
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2021__359_9_1145_0,
     author = {Nguyen Bin},
     title = {Some examples of algebraic surfaces with canonical map of degree~20},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1145--1153},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {9},
     year = {2021},
     doi = {10.5802/crmath.267},
     language = {en},
}
TY  - JOUR
AU  - Nguyen Bin
TI  - Some examples of algebraic surfaces with canonical map of degree 20
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 1145
EP  - 1153
VL  - 359
IS  - 9
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.267
LA  - en
ID  - CRMATH_2021__359_9_1145_0
ER  - 
%0 Journal Article
%A Nguyen Bin
%T Some examples of algebraic surfaces with canonical map of degree 20
%J Comptes Rendus. Mathématique
%D 2021
%P 1145-1153
%V 359
%N 9
%I Académie des sciences, Paris
%R 10.5802/crmath.267
%G en
%F CRMATH_2021__359_9_1145_0
Nguyen Bin. Some examples of algebraic surfaces with canonical map of degree 20. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1145-1153. doi : 10.5802/crmath.267. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.267/

[1] Arnaud Beauville L’application canonique pour les surfaces de type général, Invent. Math., Volume 55 (1979) no. 2, pp. 121-140 | DOI | Zbl

[2] Nguyen Bin A new example of an algebraic surface with canonical map of degree 16, Arch. Math., Volume 113 (2019) no. 4, pp. 385-390 | MR | Zbl

[3] Barbara Fantechi; Rita Pardini Automorphisms and moduli spaces of varieties with ample canonical class via deformations of abelian covers, Commun. Algebra, Volume 25 (1997) no. 5, pp. 1413-1441 | DOI | MR | Zbl

[4] Christian Gleissner; Roberto Pignatelli; Carlos Rito New surfaces with canonical map of high degree (2018) (https://arxiv.org/abs/1807.11854)

[5] Ching-Jui Lai; Sai-Kee Yeung Examples of surfaces with canonical maps of maximal degree, Taiwanese J. Math., Volume 25 (2021) no. 4, pp. 699-716 | DOI | MR

[6] Margarida Mendes Lopes; Rita Pardini The geography of irregular surfaces, Current developments in algebraic geometry (Mathematical Sciences Research Institute Publications), Volume 59, Cambridge University Press, 2012, pp. 349-378 | MR | Zbl

[7] Rita Pardini Abelian covers of algebraic varieties, J. Reine Angew. Math., Volume 417 (1991), pp. 191-213 | MR | Zbl

[8] Rita Pardini Canonical images of surfaces, J. Reine Angew. Math., Volume 417 (1991), pp. 215-219 | MR | Zbl

[9] Ulf Persson Double coverings and surfaces of general type, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977) (Lecture Notes in Mathematics), Volume 687, Springer, 1977, pp. 168-195 | Zbl

[10] Carlos Rito New canonical triple covers of surfaces, Proc. Am. Math. Soc., Volume 143 (2015) no. 11, pp. 4647-4653 | DOI | MR | Zbl

[11] Carlos Rito A surface with canonical map of degree 24, Int. J. Math., Volume 28 (2017) no. 6, 1750041, 10 pages | MR | Zbl

[12] Carlos Rito A surface with q=2 and canonical map of degree 16, Mich. Math. J., Volume 66 (2017) no. 1, pp. 99-105 | MR | Zbl

[13] Carlos Rito Surfaces with canonical map of maximum degree (2019) (https://arxiv.org/abs/1903.03017)

[14] Sheng Li Tan Surfaces whose canonical maps are of odd degrees, Math. Ann., Volume 292 (1992) no. 1, pp. 13-29 | MR | Zbl

  • Federico Fallucca Examples of surfaces with canonical maps of degree 12, 13, 15, 16 and 18, Annali di Matematica Pura ed Applicata. Serie Quarta, Volume 203 (2024) no. 3, pp. 1015-1024 | DOI:10.1007/s10231-023-01363-6 | Zbl:7864254
  • Nguyen Bin Some algebraic surfaces with canonical map of degree 10, 12, 14, Communications in Algebra, Volume 52 (2024) no. 1, pp. 1-15 | DOI:10.1080/00927872.2023.2232869 | Zbl:1533.14030
  • Federico Fallucca; Roberto Pignatelli Smooth k-double covers of the plane of geometric genus 3, Rendiconti di Matematica e delle sue Applicazioni. Serie VII, Volume 45 (2024) no. 3, pp. 153-180 | Zbl:1544.14039
  • Abel Castorena; Juan Bosco Frías-Medina The Harbourne-Hirschowitz condition and the anticanonical orthogonal property for surfaces, Journal of the Korean Mathematical Society, Volume 60 (2023) no. 2, pp. 359-374 | DOI:10.4134/jkms.j220101 | Zbl:1512.14003
  • Federico Fallucca; Christian Gleissner Some surfaces with canonical maps of degrees 10, 11, and 14, Mathematische Nachrichten, Volume 296 (2023) no. 11, pp. 5063-5069 | DOI:10.1002/mana.202200450 | Zbl:1533.14028

Cité par 5 documents. Sources : zbMATH

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: