[La dualité de Tanner entre les Modèles de Fluides de Oldroyd–Maxwell et de Grade deux]
On démontre une relation asymptotique entre un modèle de fluides de grade deux et une classe de modèles de fluides non Newtoniens proposés par Oldroyd, comprenant les modèles de Maxwell de convection supérieure et convection inférieure. Ceci confirme une observation faite à l’origine par Tanner. On donne une interprétation nouvelle de l’instabilité en temps du modèle de fluides de grade deux lorsque ses coefficients sont négatifs. Notre approche inclut une démonstration simple de la convergence de la solution du modèle stationnaire de fluides de grade deux vers celle du modèle de Navier–Stokes quand (sous des hypothèses convenables) en dimension trois. Elle donne aussi une preuve de la convergence de la solution des modèles stationnaires de Oldroyd, quand ses paramètres tendent vers zéro, vers celle du modèle de Navier–Stokes.
We prove an asymptotic relationship between the grade-two fluid model and a class of models for non-Newtonian fluids suggested by Oldroyd, including the upper-convected and lower-convected Maxwell models. This confirms an earlier observation of Tanner. We provide a new interpretation of the temporal instability of the grade-two fluid model for negative coefficients. Our techniques allow a simple proof of the convergence of the steady grade-two model to the Navier–Stokes model as (under suitable conditions) in three dimensions. They also provide a proof of the convergence of the steady Oldroyd models to the Navier–Stokes model as their parameters tend to zero.
Accepté le :
Publié le :
Vivette Girault 1 ; L. Ridgway Scott 2
@article{CRMATH_2021__359_9_1207_0, author = {Vivette Girault and L. Ridgway Scott}, title = {Tanner {Duality} {Between} the {Oldroyd{\textendash}Maxwell} and {Grade-two} {Fluid} {Models}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1207--1215}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.269}, language = {en}, }
TY - JOUR AU - Vivette Girault AU - L. Ridgway Scott TI - Tanner Duality Between the Oldroyd–Maxwell and Grade-two Fluid Models JO - Comptes Rendus. Mathématique PY - 2021 SP - 1207 EP - 1215 VL - 359 IS - 9 PB - Académie des sciences, Paris DO - 10.5802/crmath.269 LA - en ID - CRMATH_2021__359_9_1207_0 ER -
Vivette Girault; L. Ridgway Scott. Tanner Duality Between the Oldroyd–Maxwell and Grade-two Fluid Models. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1207-1215. doi : 10.5802/crmath.269. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.269/
[1] Problem of Second Grade Fluids in Convex Polyhedrons, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 2018-2038 | DOI | MR | Zbl
[2] From second grade fluids to the Navier–Stokes equations, J. Differ. Equations, Volume 265 (2018) no. 3, pp. 979-999 | DOI | MR
[3] Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Semin. Mat. Univ. Padova, Volume 31 (1961), pp. 308-340 | Numdam | MR | Zbl
[4] Mechanics and Mathematics of Fluids of the Differential Type, Advances in Mechanics and Mathematics, 35, Springer, 2016 | DOI
[5] Stationary Stokes and Navier–Stokes systems on two-or three-dimensional domains with corners. Part I. Linearized equations, SIAM J. Math. Anal., Volume 20 (1989) no. 1, pp. 74-97 | DOI | Zbl
[6] Stress-deformation relations for isotropic materials, J. Ration. Mech. Anal., Volume 4 (1955), pp. 323-425 | MR | Zbl
[7] Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, Numerical Methods for Fluids (Part 2) (Handbook of Numerical Analysis), Volume 8, Elsevier, 2002, pp. 543-660 | DOI
[8] Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition, J. Math. Pures Appl., Volume 78 (1999), pp. 981-1011 | DOI | MR
[9] Wellposedness of some Oldroyd models that lack explicit dissipation (2017) no. TR-2017-04 (Research Report UC/CS)
[10] Oldroyd models without explicit dissipation, Rev. Roum. Math. Pures Appl., Volume 63 (2018) no. 4, pp. 401-446 | MR | Zbl
[11] An asymptotic duality between the Oldroyd-Maxwell and grade-two fluid models (2021) no. TR-2021-08 (Research Report UC/CS)
[12] Régularité dans et de la solution d’une équation de transport stationnaire, C. R. Math. Acad. Sci. Paris, Volume 348 (2010) no. 15-16, pp. 885-890 | Zbl
[13] Non-Newtonian effects in steady motion of some idealized elastico-viscous fluids, Proc. R. Soc. Lond., Ser. A, Volume 245 (1958), pp. 278-297
[14] Existence of slow steady flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech., Volume 65 (1985), pp. 449-451 | DOI | MR | Zbl
[15] Existence of slow steady flows of viscoelastic fluids of integral type, Z. Angew. Math. Mech., Volume 68 (1988) no. 4, p. T40-T44 | MR | Zbl
[16] The stability of some numerical schemes for model viscoelastic fluids, J. Non-Newton. Fluid Mech., Volume 10 (1982), pp. 169-174 | DOI
Cité par Sources :
Commentaires - Politique