We offer a new and elementary proof of the convergence of the Lie series giving the flow of an analytic vector field as well as a natural deduction of such series.
Accepté le :
Publié le :
Sergio A. Carrillo 1
@article{CRMATH_2021__359_9_1155_0, author = {Sergio A. Carrillo}, title = {A quick proof of the regularity of the flow of analytic vector fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {1155--1159}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {9}, year = {2021}, doi = {10.5802/crmath.271}, language = {en}, }
Sergio A. Carrillo. A quick proof of the regularity of the flow of analytic vector fields. Comptes Rendus. Mathématique, Volume 359 (2021) no. 9, pp. 1155-1159. doi : 10.5802/crmath.271. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.271/
[1] Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables, Trans. Am. Math. Soc., Volume 347 (1995) no. 2, pp. 543-572 | DOI | MR | Zbl
[2] Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math., Volume 518 (2000) no. 2, pp. 95-129 | DOI | MR | Zbl
[3] Elementary theory of analytic functions of one or several complex variables, Hermann, 1973
[4] Die Lie-Reihen und ihre Anwendungen, VEB Deutscher Verlag der Wissenschaften, 1960 | MR | Zbl
[5] Lectures on analytic differential equations, Graduate Studies in Mathematics, 86, American Mathematical Society, 2008 | MR | Zbl
[6] Classification analytique des équations différentielles non linéaires résonnantes du premier ordre, Ann. Sci. Éc. Norm. Supér., Volume 16 (1983) no. 4, pp. 571-621 | DOI | Numdam | Zbl
[7] Über das Anfangswertproblem partieller Differentialgleichunge, Jap. J. Math., Volume 18 (1942), pp. 41-47 | DOI | MR | Zbl
[8] Lie series and nonlinear ordinary differential equations, J. Math. Anal. Appl., Volume 101 (1984), pp. 39-63 | DOI | MR | Zbl
[9] An exponential formula for polynomial vector fields: II. Lie series, exponential substituition, and rooted trees, Adv. Math., Volume 147 (1999), pp. 260-303 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique