This paper is concerned with the canonical metrics on generalized Hartogs triangles. As main contributions, we first show the existence of a Kähler–Einstein metric on generalized Hartogs triangles. On the other hand, we calculate the explicit expression for Rawnsley’s -function, and then we give the sufficient and necessary condition for the canonical metric to be balanced. As an application, we also find that there exist canonical metrics on generalized Hartogs triangles being both Kähler–Einstein and balanced.
Révisé le :
Accepté le :
Publié le :
Enchao Bi 1 ; Zelin Hou 1
@article{CRMATH_2022__360_G4_305_0, author = {Enchao Bi and Zelin Hou}, title = {Canonical metrics on generalized {Hartogs} triangles}, journal = {Comptes Rendus. Math\'ematique}, pages = {305--313}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.283}, language = {en}, }
Enchao Bi; Zelin Hou. Canonical metrics on generalized Hartogs triangles. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 305-313. doi : 10.5802/crmath.283. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.283/
[1] Balanced metric on the Fock–Bargmann–Hartogs domains, Ann. Global Anal. Geom., Volume 49 (2016) no. 4, pp. 349-359 | MR | Zbl
[2] Balanced metric and Berezin quantization on Hartogs triangles, Ann. Mat. Pura Appl., Volume 200 (2021) no. 1, pp. 273-285 | MR | Zbl
[3] The Einstein-Kähler metric on , Mich. Math. J., Volume 33 (1986) no. 2, pp. 209-220 | MR | Zbl
[4] The boundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl., Volume 448 (2017) no. 1, pp. 598-610 | DOI | MR | Zbl
[5] On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of Fefferman’s equation, Commun. Pure Appl. Math., Volume 33 (1980) no. 4, pp. 507-544 | DOI | Zbl
[6] An explicit computation of the Bergman kernel function, J. Geom. Anal., Volume 4 (1994) no. 1, pp. 23-34 | DOI | MR | Zbl
[7] Scalar curvature and projective embeddings, J. Differ. Geom., Volume 59 (2001) no. 3, pp. 479-522 | MR | Zbl
[8] Bergman theory of certain generalized Hartogs triangles, Pac. J. Math., Volume 284 (2016) no. 2, pp. 327-342 | DOI | MR | Zbl
[9] The Bergman projection on fat Hartogs triangles: boundedness, Proc. Am. Math. Soc., Volume 144 (2015) no. 5, pp. 2185-2196 | DOI | MR | Zbl
[10] Berezin quantization and reproducing kernels on complex domains, Trans. Am. Math. Soc., Volume 348 (1996) no. 2, pp. 411-479 | DOI | MR | Zbl
[11] Balanced metric on some Hartogs type domains over bounded symmetric domains, Ann. Global Anal. Geom., Volume 47 (2005) no. 4, pp. 305-333 | DOI | MR | Zbl
[12] Balanced metrics on Hartogs domains, Abh. Math. Semin. Univ. Hamb., Volume 81 (2001) no. 1, pp. 69-77 | DOI | MR | Zbl
[13] Stability of extremal Kähler manifolds, Osaka J. Math., Volume 41 (2004) no. 3, pp. 563-582 | Zbl
[14] Geometric properties of the pentablock, Complex Anal. Oper. Theory, Volume 14 (2020) no. 4, pp. 1-14 | MR | Zbl
[15] The Kähler–Einstein metric for some Hartogs domains over bounded symmetric domains, Sci. China, Volume 49 (2006) no. 9, pp. 1175-1210 | DOI | Zbl
[16] Proper holomorphic mappings between complex ellipsoids and generalized Hartogs triangles (2012) (https://arxiv.org/abs/1211.0786)
[17] Proper holomorphic mappings between generalized Hartogs triangles, Ann. Mat. Pura Appl., Volume 196 (2017) no. 3, pp. 1055-1071 | DOI | MR | Zbl
[18] Canonical metric on Cartan–Hartogs domains, Int. J. Geom. Methods Mod. Phys., Volume 9 (2012) no. 1, 125011, 13 pages | MR | Zbl
Cité par Sources :
Commentaires - Politique