Let be a product domain in , where each slice has smooth boundary. We observe that the canonical solution operator for the equation on is bounded in , . This Sobolev regularity is sharp in view of Kerzman-type examples.
Révisé le :
Accepté le :
Publié le :
Mots clés : canonical solution, $\bar{\partial }$ equation, Bergman projection, product domains, Sobolev regularity
Yuan Zhang 1
@article{CRMATH_2024__362_G2_171_0, author = {Yuan Zhang}, title = {Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains}, journal = {Comptes Rendus. Math\'ematique}, pages = {171--176}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.561}, language = {en}, }
Yuan Zhang. Sobolev regularity of the canonical solutions to $\bar{\partial }$ on product domains. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 171-176. doi : 10.5802/crmath.561. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.561/
[1] The Cauchy transform, potential theory and conformal mapping, Chapman & Hall/CRC, 2016
[2] The Cauchy–Riemann equations on product domains, Math. Ann., Volume 349 (2011) no. 4, pp. 977-998 | DOI | MR | Zbl
[3] mapping properties of the Bergman projection on the Hartogs triangle, Proc. Am. Math. Soc., Volume 144 (2016) no. 4, pp. 1643-1653 | DOI | MR | Zbl
[4] The boundedness of the Bergman projection for a class of bounded Hartogs domains, J. Math. Anal. Appl., Volume 448 (2017) no. 1, pp. 598-610 | DOI | MR | Zbl
[5] Product domains, multi-Cauchy transforms, and the equation, Adv. Math., Volume 360 (2020), 106930, 42 pages | MR | Zbl
[6] Sharp pointwise and uniform estimates for , Anal. PDE, Volume 16 (2023) no. 2, pp. 407-431 | DOI | MR | Zbl
[7] Uniform estimates for the canonical solution to the -equation on product domains (2006) | arXiv
[8] Sobolev mapping of some holomorphic projections, J. Geom. Anal., Volume 30 (2020) no. 2, pp. 1293-1311 | DOI | MR | Zbl
[9] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | Zbl
[10] The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal., Volume 130 (1995) no. 1, pp. 161-219 | DOI | MR | Zbl
[11] On the canonical solution of on polydiscs, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 5, pp. 523-528 | Zbl
[12] On the projection of into , Duke Math. J., Volume 42 (1975), pp. 231-237 | MR | Zbl
[13] Szegö and Bergman projections on non-smooth planar domains, J. Geom. Anal., Volume 14 (2004) no. 1, pp. 63-86 | DOI | Zbl
[14] The Bergman projection in for domains with minimal smoothness, Ill. J. Math., Volume 56 (2012) no. 1, pp. 127-154 | MR | Zbl
[15] Solving the Kerzman’s problem on the sup-norm estimate for on product domains (2022) | arXiv
[16] Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J., Volume 73 (1994) no. 1, pp. 177-199 | MR | Zbl
[17] Estimates for the Bergman and Szegö kernels in , Ann. Math., Volume 129 (1989) no. 1, pp. 113-149 | DOI
[18] Optimal Sobolev regularity of on the Hartogs triangle. (2022) | arXiv
[19] Weighted Sobolev estimates of the truncated Beurling operator (2022) | arXiv
[20] Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains, Duke Math. J., Volume 44 (1977), pp. 695-704 | Zbl
[21] Sobolev regularity of the Beurling transform on planar domains, Volume 61 (2017) no. 2, pp. 291-336 | MR | Zbl
[22] Uniform estimates of the Cauchy-Riemann equations on product domains (2022) | arXiv
[23] Weighted Sobolev estimates of on domains covered by polydiscs (preprint)
[24] A survey of the regularity of the Bergman projection, Complex Anal. Synerg., Volume 6 (2020) no. 2, 19, 7 pages | MR | Zbl
[25] Optimal regularity for on the Hartogs triangle (2022) | arXiv
Cité par Sources :
Commentaires - Politique