The critical exponent of a finite or infinite word over a given alphabet is the supremum of the reals for which contains an -power. We study the maps associating to every real in the unit interval the inverse of the critical exponent of its base- expansion. We strengthen a combinatorial result by J.D. Currie and N. Rampersad to show that these maps are left- or right-Darboux at every point, and use dynamical methods to show that they have infinitely many nontrivial fixed points and infinite topological entropy. Moreover, we show that our model-case map is topologically mixing.
Revised:
Accepted:
Published online:
Dario Corona 1; Alessandro Della Corte 2
@article{CRMATH_2022__360_G4_315_0, author = {Dario Corona and Alessandro Della Corte}, title = {The critical exponent functions}, journal = {Comptes Rendus. Math\'ematique}, pages = {315--332}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.286}, language = {en}, }
Dario Corona; Alessandro Della Corte. The critical exponent functions. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 315-332. doi : 10.5802/crmath.286. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.286/
[1] On the expansion of some exponential periods in an integer base, Math. Ann., Volume 346 (2010), pp. 107-116 | DOI | MR | Zbl
[2] Dynamics for -shifts and Diophantine approximation, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 6, pp. 1695-1711 | DOI | MR | Zbl
[3] The ubiquitous Prouhet–Thue–Morse sequence, Sequences and their applications. Proceedings of the international conference, SETA ’98, Singapore, December 14-17, 1998 (C. Ding, ed.) (Springer Series in Discrete Mathematics and Theoretical Computer Science), Springer, 1999, pp. 1-16 | Zbl
[4] Leçons sur les fonctions discontinues, Gauthier-Villars, 1905 (VIII u. 127 S.8°.) | Zbl
[5] Combinatorics on Words: Christoffel Words and Repetitions in Words, CRM Monograph Series, 27, American Mathematical Society, 2008 | DOI | Zbl
[6] Entropy for group endomorphisms and homogeneous spaces, Trans. Am. Math. Soc., Volume 153 (1971), pp. 401-414 | DOI | MR | Zbl
[7] For Each 2 There Is an Infinite Binary Word with Critical Exponent , Electron. J. Comb. (2008), N34 | MR | Zbl
[8] A proof of Dejean’s conjecture, Math. Comput., Volume 80 (2011) no. 274, pp. 1063-1070 | DOI | MR | Zbl
[9] Sur Un Théorème de Thue, J. Comb. Theory, Ser. A, Volume 13 (1972) no. 1, pp. 90-99 | DOI | MR | Zbl
[10] A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, Volume 190 (1970) no. 1, pp. 19-22 | MR | Zbl
[11] Fractal geometry: mathematical foundations and applications, John Wiley & Sons, 2003 | DOI | Zbl
[12] An elementary proof that almost all real numbers are normal, Acta Univ. Sapientiae, Math., Volume 2 (2010), pp. 99-110 | MR | Zbl
[13] Polynomial versus exponential growth in repetition-free binary words, J. Comb. Theory, Ser. A, Volume 105 (2004) no. 2, pp. 335-347 | DOI | MR | Zbl
[14] Every Real Number Greater than 1 Is a Critical Exponent, Theor. Comput. Sci., Volume 381 (2007) no. 1, pp. 177-182 | DOI | MR | Zbl
[15] Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques., J. Math. Pures Appl. (1851), pp. 133-142
[16] On the Entropy of Darboux Functions, Colloq. Math., Volume 116 (2009) no. 2, pp. 227-241 | DOI | MR | Zbl
[17] Old and new results on normality, Dynamics and stochastics. Festschrift in honor of M. S. Keane (Dee Denteneer, ed.) (Institute of Mathematical Statistics Lecture Notes - Monograph Series), Volume 48, Institute of Mathematical Statistics, 2006, pp. 225-236 | DOI | MR | Zbl
[18] Last Cases of Dejean’s Conjecture, Theor. Comput. Sci., Volume 412 (2011) no. 27, pp. 3010-3018 | DOI | MR | Zbl
[19] Darboux quasicontinuous functions, Real Anal. Exch., Volume 23(1997-98) (1998) no. 2, pp. 631-639 | MR | Zbl
[20] Chaos on the Interval, University Lecture Series, 67, American Mathematical Society, 2017 | MR | Zbl
[21] Dynamics of Typical Baire-1 Functions on the Interval, J. Appl. Anal., Volume 23 (2017) no. 2, pp. 59-64 | MR | Zbl
[22] Dynamics of Baire-1 Functions on the Interval, Eur. J. Math., Volume 5 (2019) no. 1, pp. 138-149 | DOI | MR | Zbl
[23] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, J. Dybwad, 1912 (67 S. Lex. OCLC: 458299532) | Zbl
[24] Critical Exponents of Words over 3 Letters, Electron. J. Comb. (2011), P125 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy