[Remarque sur la contrôlabilité locale du système de Boussinesq avec la condition de frontière de Navier]
Cette note concerne la contrôlabilité locale d’une classe particulière de trajectoires, ceci pour le système de Boussinesq avec la condition de Navier non linéaire et certains contrôles internes. En bref, la propriété de contrôlabilité exacte locale s’obtient en dimension deux en n’utilisant que le contrôle associé à l’équation de la chaleur. En revanche, deux contrôles scalaires sont nécessaires pour obtenir notre résultat dans le cas de dimension trois
This note deals with the local exact controllability to a particular class of trajectories for the Boussinesq system with nonlinear Navier–slip boundary conditions and internal controls having vanishing components. Briefly speaking, in two dimensions, the local exact controllability property is obtained using only one control in the heat equation, whereas two scalar controls are required in three dimensions.
Révisé le :
Accepté le :
Publié le :
Cristhian Montoya 1
@article{CRMATH_2020__358_2_169_0, author = {Cristhian Montoya}, title = {Remarks on local controllability for the {Boussinesq} system with {Navier} boundary condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {169--175}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {2}, year = {2020}, doi = {10.5802/crmath.29}, language = {en}, }
TY - JOUR AU - Cristhian Montoya TI - Remarks on local controllability for the Boussinesq system with Navier boundary condition JO - Comptes Rendus. Mathématique PY - 2020 SP - 169 EP - 175 VL - 358 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmath.29 LA - en ID - CRMATH_2020__358_2_169_0 ER -
Cristhian Montoya. Remarks on local controllability for the Boussinesq system with Navier boundary condition. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 169-175. doi : 10.5802/crmath.29. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.29/
[1] Local controllability of the -dimensional Boussinesq system with scalar controls in an arbitrary control domain, Math. Control Relat. Fields, Volume 2 (2012) no. 4, pp. 361-382 | DOI | MR | Zbl
[2] Local null controllability of the -dimensional Navier–Stokes system with scalar controls in an arbitrary control domain, J. Math. Fluid Mech., Volume 15 (2013) no. 1, pp. 139-153 | DOI | MR | Zbl
[3] Null controllability of the -dimensional Stokes system with scalar controls, J. Differ. Equations, Volume 246 (2009) no. 7, pp. 2908-2921 | DOI | MR | Zbl
[4] Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components, Invent. Math., Volume 198 (2014) no. 3, pp. 833-880 | DOI | MR | Zbl
[5] Small-time global exact controllability of the navier-stokes equation with navier slip-with-friction boundary conditions (2016) (https://arxiv.org/abs/1612.08087)
[6] Some controllability results for the -dimensional Navier–Stokes and Boussinesq systems with scalar controls, SIAM J. Control Optimization, Volume 45 (2006) no. 1, pp. 146-173 | DOI | MR | Zbl
[7] Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National Univ., 1996 | MR | Zbl
[8] Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optimization, Volume 36 (1998) no. 2, pp. 391-421 | DOI | MR | Zbl
[9] Exact controllability of the Navier–Stokes and Boussinesq equations, Usp. Mat. Nauk, Volume 54 (1999) no. 3, pp. 93-146 | MR | Zbl
[10] Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 1, pp. 29-61 | DOI | Numdam | MR | Zbl
[11] Local exact controllability to the trajectories of the Navier–Stokes system with nonlinear Navier-slip boundary conditions, ESAIM, Control Optim. Calc. Var., Volume 12 (2006) no. 3, pp. 484-544 | DOI | Numdam | MR | Zbl
[12] Local null controllability of the -dimensional Navier–Stokes system with nonlinear Navier-slip boundary conditions and scalar controls, J. Math. Pures Appl., Volume 113 (2018), pp. 37-69 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique