Comptes Rendus
Équations aux dérivées partielles, Théorie des systèmes
Remarks on local controllability for the Boussinesq system with Navier boundary condition
[Remarque sur la contrôlabilité locale du système de Boussinesq avec la condition de frontière de Navier]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 169-175.

Cette note concerne la contrôlabilité locale d’une classe particulière de trajectoires, ceci pour le système de Boussinesq avec la condition de Navier non linéaire et certains contrôles internes. En bref, la propriété de contrôlabilité exacte locale s’obtient en dimension deux en n’utilisant que le contrôle associé à l’équation de la chaleur. En revanche, deux contrôles scalaires sont nécessaires pour obtenir notre résultat dans le cas de dimension trois

This note deals with the local exact controllability to a particular class of trajectories for the Boussinesq system with nonlinear Navier–slip boundary conditions and internal controls having vanishing components. Briefly speaking, in two dimensions, the local exact controllability property is obtained using only one control in the heat equation, whereas two scalar controls are required in three dimensions.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.29

Cristhian Montoya 1

1 Universidad Técnica Federico Santa Maria, Casilla 110–V, Valparaiso, Chile
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_2_169_0,
     author = {Cristhian Montoya},
     title = {Remarks on local controllability for the {Boussinesq} system with {Navier} boundary condition},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {169--175},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {2},
     year = {2020},
     doi = {10.5802/crmath.29},
     language = {en},
}
TY  - JOUR
AU  - Cristhian Montoya
TI  - Remarks on local controllability for the Boussinesq system with Navier boundary condition
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 169
EP  - 175
VL  - 358
IS  - 2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.29
LA  - en
ID  - CRMATH_2020__358_2_169_0
ER  - 
%0 Journal Article
%A Cristhian Montoya
%T Remarks on local controllability for the Boussinesq system with Navier boundary condition
%J Comptes Rendus. Mathématique
%D 2020
%P 169-175
%V 358
%N 2
%I Académie des sciences, Paris
%R 10.5802/crmath.29
%G en
%F CRMATH_2020__358_2_169_0
Cristhian Montoya. Remarks on local controllability for the Boussinesq system with Navier boundary condition. Comptes Rendus. Mathématique, Volume 358 (2020) no. 2, pp. 169-175. doi : 10.5802/crmath.29. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.29/

[1] Nicolás Carreño Local controllability of the N-dimensional Boussinesq system with N-1 scalar controls in an arbitrary control domain, Math. Control Relat. Fields, Volume 2 (2012) no. 4, pp. 361-382 | DOI | MR | Zbl

[2] Nicolás Carreño; Sergio Guerrero Local null controllability of the N-dimensional Navier–Stokes system with N-1 scalar controls in an arbitrary control domain, J. Math. Fluid Mech., Volume 15 (2013) no. 1, pp. 139-153 | DOI | MR | Zbl

[3] Jean-Michel Coron; Sergio Guerrero Null controllability of the N-dimensional Stokes system with N-1 scalar controls, J. Differ. Equations, Volume 246 (2009) no. 7, pp. 2908-2921 | DOI | MR | Zbl

[4] Jean-Michel Coron; Pierre Lissy Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components, Invent. Math., Volume 198 (2014) no. 3, pp. 833-880 | DOI | MR | Zbl

[5] Jean-Michel Coron; Frédéric Marbach; Franck Sueur Small-time global exact controllability of the navier-stokes equation with navier slip-with-friction boundary conditions (2016) (https://arxiv.org/abs/1612.08087)

[6] Enrique Fernández-Cara; Sergio Guerrero; Oleg Yu. Imanuvilov; Jean-Pierre Puel Some controllability results for the N-dimensional Navier–Stokes and Boussinesq systems with N-1 scalar controls, SIAM J. Control Optimization, Volume 45 (2006) no. 1, pp. 146-173 | DOI | MR | Zbl

[7] Andreĭ V. Fursikov; Oleg Yu. Imanuvilov Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National Univ., 1996 | MR | Zbl

[8] Andreĭ V. Fursikov; Oleg Yu. Imanuvilov Local exact boundary controllability of the Boussinesq equation, SIAM J. Control Optimization, Volume 36 (1998) no. 2, pp. 391-421 | DOI | MR | Zbl

[9] Andreĭ V. Fursikov; Oleg Yu. Imanuvilov Exact controllability of the Navier–Stokes and Boussinesq equations, Usp. Mat. Nauk, Volume 54 (1999) no. 3, pp. 93-146 | MR | Zbl

[10] Sergio Guerrero Local exact controllability to the trajectories of the Boussinesq system, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006) no. 1, pp. 29-61 | DOI | Numdam | MR | Zbl

[11] Sergio Guerrero Local exact controllability to the trajectories of the Navier–Stokes system with nonlinear Navier-slip boundary conditions, ESAIM, Control Optim. Calc. Var., Volume 12 (2006) no. 3, pp. 484-544 | DOI | Numdam | MR | Zbl

[12] Sergio Guerrero; Cristhian Montoya Local null controllability of the N-dimensional Navier–Stokes system with nonlinear Navier-slip boundary conditions and N-1 scalar controls, J. Math. Pures Appl., Volume 113 (2018), pp. 37-69 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique