[Glowinski et le contrôle numérique]
Dans cet article, on rappelle quelques contributions sur contrôle numérique des EDPs issues du travail de Roland Glowinski. On considérera des problèmes de contrôlabilité nulle pour des équations de la chaleur linéaires et non linéaires et aussi pour des systèmes à frontière libre. Nous regarderons aussi quelques problèmes de contrôle optimal bi-objectif. En outre, quelques méthodes et résultats nouveaux seront annoncés.
This paper is devoted to recall several contributions to the numerical control of PDE’s that have origin in Glowinski’s work. I will consider null controllability problems for linear and nonlinear heat equations and some free-boundary systems. We will also deal with some bi-objective optimal control problems. Additionally, some new methods and results will be announced.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Controllability of linear and nonlinear PDE’s, control of free-boundary problems, bi-objective optimal control problems, Nash equilibria, numerical methods
Mot clés : Contrôlabilité des EDPs linéaires et non linéaires, contrôle de problèmes de frontières libre, Problèmes de contrôle bi-objectif, Equilibria de Nash, Méthodes numériques
Enrique Fernández-Cara 1
@article{CRMECA_2023__351_S1_411_0, author = {Enrique Fern\'andez-Cara}, title = {Glowinski and numerical control problems}, journal = {Comptes Rendus. M\'ecanique}, pages = {411--430}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.177}, language = {en}, }
Enrique Fernández-Cara. Glowinski and numerical control problems. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 411-430. doi : 10.5802/crmeca.177. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.177/
[1] A numerical study of some questions in vortex rings theory, RAIRO Anal. Numér., Volume 18 (1984) no. 1, pp. 7-85 | DOI | Numdam | MR | Zbl
[2] Sur l’existence de solutions d’un problème d’évolution apparaissant en physique des semi-conducteurs (1981) no. RR-0079 (https://hal.inria.fr/inria-00076482/file/RR-0079.pdf) (Technical report)
[3] Résolution numérique d’un problème non linéaire lié à la diffusion d’impuretés dans du silicium, Computing methods in applied sciences and engineering V, Proc. 5th int. Symp., Versailles 1981 (1982) | Zbl
[4] Simulations numériques dans la fabrication des circuits a semi-conducteurs (Process modelling) (1984) no. RR-0305 (https://hal.inria.fr/inria-00076252) (Technical report)
[5] Glowinski and splitting (to appear)
[6] Exact and approximate controllability for distributed parameter systems, Acta Numerica 1995, Cambridge University Press, 1995, pp. 159-333 | DOI | Zbl
[7] The turnpike property in finite-dimensional nonlinear optimal control, J. Differ. Equations, Volume 258 (2015) no. 1, pp. 81-114 | DOI | MR | Zbl
[8] On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems, ESAIM, Proc., Volume 41 (2012), pp. 15-58 | DOI
[9] Exact and approximate controllability for distributed parameter systems. A numerical approach, Encyclopedia of Mathematics and Its Applications, 117, Cambridge University Press, 1994 | Zbl
[10] The cost of approximate controllability for heat equations: the linear case, Adv. Differ. Equ., Volume 5 (2000) no. 4–6, pp. 465-514 | MR | Zbl
[11] Strong convergent approximations of null controls for the 1D heat equation, SMA J., Volume 61 (2013) no. 1, pp. 49-78 | DOI | MR | Zbl
[12] Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, Global Analysis Research Center, 1996 | Zbl
[13] On the numerical controllability of the two-dimensional heat, Stokes and Navier-Stokes equations, J. Sci. Comput., Volume 70 (2017) no. 2, pp. 819-858 | DOI | MR | Zbl
[14] Augmented Lagrangian methods. Applications to the numerical solution of boundary value problems (Michel Fortin; Roland Glowinski, eds.), Studies in Mathematics and its Applications, 15, North-Holland, 1983 | DOI | Zbl
[15] A Method for the Spatial Discretization of Parabolic Equations in One Space Variable, SIAM J. Sci. Stat. Comput., Volume 11 (1990) no. 1, pp. 1-32 | DOI | MR | Zbl
[16] Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods, Math. Control Relat. Fields, Volume 2 (2012) no. 3, pp. 217-246 | DOI | MR | Zbl
[17] Theoretical and numerical local null controllability of a quasi-linear parabolic equation in dimensions 2 and 3, J. Franklin Inst., Volume 358 (2021) no. 5, pp. 2846-2871 | DOI | MR | Zbl
[18] Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616 | DOI | Numdam | MR | Zbl
[19] Exact controllability of semilinear heat equations through a constructive approach, Evol. Equ. Control Theory, Volume 12 (2023) no. 2, pp. 567-599 | DOI | MR
[20] The mesh adapting software: BAMG, INRIA report, Volume 250, 1998, p. 252 (http://wwwrocq.inria.fr/gamma/cdrom/www/bamg/eng.html)
[21] Remarks on the control of two-phase Stefan free-boundary problems, SIAM J. Control Optim., Volume 60 (2022) no. 5, pp. 3078-3099 | DOI | MR | Zbl
[22] On the theoretical and numerical control of two-phase Stefan free-boundary problems (to appear)
[23] Nash Equilibria for the multiobjective control of linear partial differential equations, J. Optim. Theory Appl., Volume 112 (2002) no. 3, pp. 457-498 | DOI | MR
[24] Pointwise control of the burgers equation and related nash equilibrium problems: computational approach, J. Optim. Theory Appl., Volume 112 (2002) no. 3, pp. 499-516 | DOI | MR | Zbl
[25] On the approximate controllability of Stackelberg-Nash strategies, Ocean circulation and pollution control - A mathematical and numerical investigation (Madrid, 1997), Springer, 2004, pp. 17-27 | DOI
[26] Bi-objective optimal control of some PDEs: Nash equilibria and quasi-equilibria, ESAIM, Control Optim. Calc. Var., Volume 27 (2021), 50, 30 pages | MR | Zbl
[27] Theoretical and numerical results for some bi-objective optimal control problems, Commun. Pure Appl. Anal., Volume 19 (2020) no. 4, pp. 2101-2126 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique