Received:

Revised:

Accepted:

Published online:

DOI:
10.5802/crmath.296

Revised:

Accepted:

Published online:

Classification:
33B15, 26A48, 26A51, 26D07, 26D15, 26D20, 44A10, 60E15

Author's affiliations:

Feng Qi ^{1}

License: CC-BY 4.0

Copyrights: The authors retain unrestricted copyrights and publishing rights

Feng Qi. Decreasing properties of two ratios defined by three and four polygamma functions. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 89-101. doi : 10.5802/crmath.296. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.296/

[1] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Milton Abramowitz; Irene A. Stegun, eds.), National Bureau of Standards, Applied Mathematics Series, 55, Dover Publications, 1992 (reprint of the 1972 edition)

[2] Inequalities for the polygamma functions, SIAM J. Math. Anal., Volume 29 (1998) no. 6, pp. 1459-1466 | DOI | MR | Zbl

[3] Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, 1997 | Zbl

[4] On some properties of digamma and polygamma functions, J. Math. Anal. Appl., Volume 328 (2007) no. 1, pp. 452-465 | DOI | MR | Zbl

[5] Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ., Volume 48 (2008) no. 1, pp. 229-238 | MR | Zbl

[6] Some monotonicity properties of gamma and $q$-gamma functions, ISRN Math. Anal., Volume 2011 (2011), 375715, 15 pages | MR | Zbl

[7] Some completely monotonic functions involving the polygamma functions, J. Inequal. Appl., Volume 2019 (2019), 218, 9 pages | MR | Zbl

[8] On the increasing monotonicity of a sequence originating from computation of the probability of intersecting between a plane couple and a convex body, Turk. J. Anal. Number Theory, Volume 3 (2015) no. 1, pp. 21-23

[9] Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms Spec. Funct., Volume 21 (2010) no. 11, pp. 849-858 | MR

[10] An inequality satisfied by the gamma function, Skand. Aktuarietidskr., Volume 39 (1956), pp. 171-172 | MR | Zbl

[11] Fisher–Rao geometry of Dirichlet distributions, Differ. Geom. Appl., Volume 74 (2021), 101702, 17 pages | MR | Zbl

[12] Inequalities: Theory of Majorization and its Applications, Springer Series in Statistics, Springer, 2011

[13] Classical and New Inequalities in Analysis, Mathematics and Its Applications. East European Series, 61, Kluwer Academic Publishers, 1993 | DOI

[14] Completely monotonic degree of a function involving trigamma and tetragamma functions, AIMS Math., Volume 5 (2020) no. 4, pp. 3391-3407 | MR

[15] Decreasing monotonicity of two ratios defined by three or four polygamma functions (2020) (https://hal.archives-ouvertes.fr/hal-02998414)

[16] Lower bound of sectional curvature of manifold of beta distributions and complete monotonicity of functions involving polygamma functions (2020) (https://www.preprints.org/manuscript/202011.0315/v1) | DOI

[17] Necessary and sufficient conditions for a difference defined by four derivatives of a function containing trigamma function to be completely monotonic (2020) (to appear in Appl. Comput. Math., https://osf.io/56c2s/) | DOI

[18] Some properties of several functions involving polygamma functions and originating from the sectional curvature of the beta manifold, São Paulo J. Math. Sci., Volume 14 (2020) no. 2, pp. 614-630 | MR | Zbl

[19] Bounds for completely monotonic degree of a remainder for an asymptotic expansion of the trigamma function, Arab. J. Basic Appl. Sci., Volume 28 (2021) no. 1, pp. 314-318

[20] Lower bound of sectional curvature of Fisher–Rao manifold of beta distributions and complete monotonicity of functions involving polygamma functions, Results Math., Volume 76 (2021) no. 4, 217, 16 pages | MR | Zbl

[21] Necessary and sufficient conditions for a difference constituted by four derivatives of a function involving trigamma function to be completely monotonic, Math. Inequal. Appl., Volume 24 (2021) no. 3, pp. 845-855 | MR | Zbl

[22] Necessary and sufficient conditions for a ratio involving trigamma and tetragamma functions to be monotonic, Turk. J. Inequal., Volume 5 (2021) no. 1, pp. 50-59

[23] Necessary and sufficient conditions for complete monotonicity and monotonicity of two functions defined by two derivatives of a function involving trigamma function, Appl. Anal. Discrete Math., Volume 15 (2021) no. 2, pp. 378-392 | DOI | MR

[24] Decreasing property and complete monotonicity of two functions constituted via three derivatives of a function involving trigamma function, Math. Slovaca, Volume 72 (2022) (in press)

[25] Two completely monotonic functions defined by two derivatives of a function involving trigamma function, TWMS J. Pure Appl. Math., Volume 13 (2022) no. 1 (in press)

[26] On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., Volume 2019 (2019), 36, 42 pages | MR | Zbl

[27] Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic, Adv. Appl. Math., Volume 44 (2010) no. 1, pp. 71-83 | MR | Zbl

[28] Complete monotonicity of divided differences of the di- and tri-gamma functions with applications, Georgian Math. J., Volume 23 (2016) no. 2, pp. 279-291 | MR | Zbl

[29] Monotonicity and complete monotonicity of two functions defined by three derivatives of a function involving trigamma function (2020) (https://hal.archives-ouvertes.fr/hal-02998203)

[30] A ratio of finitely many gamma functions and its properties with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 115 (2021) no. 2, 39, 14 pages | MR | Zbl

[31] Completely monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl. Math., Volume 361 (2019), pp. 366-371 | MR | Zbl

[32] Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem, J. Inequal. Appl., Volume 2013 (2013), 542, 20 pages | Zbl

[33] Some properties of a function originating from geometric probability for pairs of hyperplanes intersecting with a convex body, Math. Comput. Appl., Volume 21 (2016) no. 3, 27, 6 pages | MR

[34] Some properties of a sequence arising from geometric probability for pairs of hyperplanes intersecting with a convex body, Comput. Appl. Math., Volume 37 (2018) no. 2, pp. 2190-2200 | MR | Zbl

[35] Schur-convexity of the Catalan–Qi function related to the Catalan numbers, Tbil. Math. J., Volume 9 (2016) no. 2, pp. 141-150 | MR | Zbl

[36] Bernstein Functions, De Gruyter Studies in Mathematics, 37, Walter de Gruyter, 2012 | DOI

[37] Two Schur-convex functions related to Hadamard-type integral inequalities, Publ. Math., Volume 78 (2011) no. 2, pp. 393-403 | MR | Zbl

[38] Asymptotic expansions of Gurland’s ratio and sharp bounds for their remainders, J. Math. Anal. Appl., Volume 493 (2021) no. 2, 124545, 19 pages | MR | Zbl

[39] New properties of the divided difference of psi and polygamma functions, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 115 (2021) no. 3, 147, 23 pages | MR | Zbl

[40] The Laplace Transform, Princeton University Press, 1946

[41] Qi’s conjectures on completely monotonic degrees of remainders of asymptotic formulas of di- and tri-gamma functions, J. Inequal. Appl., Volume 2020 (2020), 83, 10 pages | Zbl

[42] Some properties of the divided difference of psi and polygamma functions, J. Math. Anal. Appl., Volume 455 (2017) no. 1, pp. 761-777 | DOI | MR | Zbl

[43] Monotonicity and inequalities for the gamma function, J. Inequal. Appl., Volume 2017 (2017), 317, 15 pages | MR | Zbl

[44] A class of completely mixed monotonic functions involving the gamma function with applications, Proc. Am. Math. Soc., Volume 146 (2018) no. 11, pp. 4707-4721 | DOI | MR | Zbl

[45] Monotonicity rules for the ratio of two Laplace transforms with applications, J. Math. Anal. Appl., Volume 470 (2019) no. 2, pp. 821-845 | DOI | MR | Zbl

[46] Some properties of the generalized Gaussian ratio and their applications, Math. Inequal. Appl., Volume 23 (2020) no. 1, pp. 177-200 | MR | Zbl

[47] Necessary and sufficient conditions on the Schur convexity of a bivariate mean, AIMS Math., Volume 6 (2021) no. 1, pp. 296-303 | MR

[48] Geometric probability for pairs of hyperplanes intersecting with a convex body, Math. Appl., Volume 29 (2016) no. 1, pp. 233-238 | MR | Zbl

[49] Completely monotonic integer degrees for a class of special functions, AIMS Math., Volume 5 (2020) no. 4, pp. 3456-3471 | MR

*Cited by Sources: *

Comments - Policy

Articles of potential interest

Zhong-Xuan Mao; Jing-Feng Tian

C. R. Math (2023)