Comptes Rendus
Analyse numérique, Équations aux dérivées partielles
Finite element error estimates for a mixed degenerate parabolic model
[Des estimations d’erreur par éléments finis pour un modèle parabolique dégénéré mixte]
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 431-438.

Le but de cette note est de déduire des estimations d’erreur pour une approximation par la méthode des éléments finis entièrement discrets d’un type d’équations paraboliques mixtes dégénérées. Les résultats obtenus considèrent des hypothèses de régularité sur la variable principale selon le caractère dégénéré du problème, donné par le terme impliquant la dérivée temporelle, qui est représentée par un opérateur linéaire non inversible R. Nous présentons deux approches différentes pour obtenir les estimations d’erreur. La première nécessite d’introduire un opérateur d’extension de R et la seconde nécessite d’ajouter une nouvelle propriété d’ellipticité pour cet opérateur. Ces estimations d’erreur peuvent être appliquées pour analyser l’approximation par la méthode des éléments finis entièrement discrets d’un modèle de courants de Foucault.

The aim of this note is to deduce error estimates for a fully-discrete finite element method approximation of a kind of degenerate mixed parabolic equations. The obtained results consider regularity assumptions about the main variable according to the degenerate character of the problem, given by the term involving the time-derivative, which is represented with a non-invertible linear operator R. We show two different approaches to obtain the error estimates. The first one needs to introduce an extension operator of R and the second one requires to add a new ellipticity property for this operator. These error estimates can be applied to analyze the fully-discrete finite element method approximation of an eddy current model.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.308
Classification : 65N30, 35K65, 78M10

Ramiro Miguel Acevedo Martínez 1 ; Christian Camilo Gómez Mosquera 1

1 Departamento de Matemáticas, Universidad del Cauca, Popayán, Colombia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G5_431_0,
     author = {Ramiro Miguel Acevedo Mart{\'\i}nez and Christian Camilo G\'omez Mosquera},
     title = {Finite element error estimates for a mixed degenerate parabolic model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {431--438},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.308},
     language = {en},
}
TY  - JOUR
AU  - Ramiro Miguel Acevedo Martínez
AU  - Christian Camilo Gómez Mosquera
TI  - Finite element error estimates for a mixed degenerate parabolic model
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 431
EP  - 438
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.308
LA  - en
ID  - CRMATH_2022__360_G5_431_0
ER  - 
%0 Journal Article
%A Ramiro Miguel Acevedo Martínez
%A Christian Camilo Gómez Mosquera
%T Finite element error estimates for a mixed degenerate parabolic model
%J Comptes Rendus. Mathématique
%D 2022
%P 431-438
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.308
%G en
%F CRMATH_2022__360_G5_431_0
Ramiro Miguel Acevedo Martínez; Christian Camilo Gómez Mosquera. Finite element error estimates for a mixed degenerate parabolic model. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 431-438. doi : 10.5802/crmath.308. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.308/

[1] Ramiro Acevedo; Christian Gómez; Bibiana López-Rodríguez Fully discrete finite element approximation for a family of degenerate parabolic mixed equations, Comput. Math. Appl., Volume 96 (2021), pp. 155-177 | DOI | MR | Zbl

[2] Ramiro Acevedo; Christian Gómez; Bibiana López-Rodríguez Well-posedness for a family of degenerate parabolic mixed equations, J. Math. Anal. Appl., Volume 498 (2021) no. 1, 124903 | DOI | MR | Zbl

[3] Ramiro Acevedo; Salim Meddahi An E-based mixed FEM and BEM coupling for a time-dependent eddy current problem, IMA J. Numer. Anal., Volume 31 (2011) no. 2, pp. 667-697 | DOI | MR | Zbl

[4] Ramiro Acevedo; Salim Meddahi; Rodolfo Rodríguez An E-based mixed formulation for a time-dependent eddy current problem, Math. Comput., Volume 78 (2009) no. 268, pp. 1929-1949 | DOI | MR | Zbl

[5] Alfredo Bermúdez; Bibiana López-Rodríguez; Rodolfo Rodríguez; Pilar Salgado An eddy current problem in terms of a time-primitive of the electric field with non-local source conditions, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 3, pp. 875-902 | DOI | Numdam | MR | Zbl

[6] Fabio Paronetto Homogenization of degenerate elliptic-parabolic equations, Asymptotic Anal., Volume 37 (2004) no. 1, pp. 21-56 | MR | Zbl

[7] Walter Rudin Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991 | Zbl

Cité par Sources :

Commentaires - Politique