We give rates of convergence in the Central Limit Theorem for the matrix coefficients and the spectral radius of the left random walk on , assuming the existence of an exponential or polynomial moment.
Nous donnons des vitesses de convergence dans le théorème limite central pour les coefficients matriciels et pour le rayon spectral de la marche aléatoire gauche sur , en supposant l’existence d’un moment exponentiel ou polynomial.
Revised:
Accepted:
Published online:
Christophe Cuny 1; Jérôme Dedecker 2; Florence Merlevède 3; Magda Peligrad 4
@article{CRMATH_2022__360_G5_475_0, author = {Christophe Cuny and J\'er\^ome Dedecker and Florence Merlev\`ede and Magda Peligrad}, title = {Berry{\textendash}Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {475--482}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.312}, language = {en}, }
TY - JOUR AU - Christophe Cuny AU - Jérôme Dedecker AU - Florence Merlevède AU - Magda Peligrad TI - Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$ JO - Comptes Rendus. Mathématique PY - 2022 SP - 475 EP - 482 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.312 LA - en ID - CRMATH_2022__360_G5_475_0 ER -
%0 Journal Article %A Christophe Cuny %A Jérôme Dedecker %A Florence Merlevède %A Magda Peligrad %T Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$ %J Comptes Rendus. Mathématique %D 2022 %P 475-482 %V 360 %I Académie des sciences, Paris %R 10.5802/crmath.312 %G en %F CRMATH_2022__360_G5_475_0
Christophe Cuny; Jérôme Dedecker; Florence Merlevède; Magda Peligrad. Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 475-482. doi : 10.5802/crmath.312. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.312/
[1] The central limit theorem for eigenvalues, Proc. Am. Math. Soc., Volume 149 (2021) no. 2, pp. 859-873 | DOI | MR | Zbl
[2] Central limit theorem for linear groups, Ann. Probab., Volume 44 (2016) no. 2, pp. 1308-1340 | MR | Zbl
[3] Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 62, Springer, 2016 | DOI | Zbl
[4] Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985 | DOI | Zbl
[5] Limit theorems for the left random walk on , Ann. Inst. Henri Poincaré, Probab. Stat., Volume 53 (2017) no. 4, pp. 1839-1865 | MR | Zbl
[6] Large and moderate deviations for the left random walk on , ALEA, Lat. Am. J. Probab. Math. Stat., Volume 14 (2017) no. 1, pp. 503-527 | DOI | Zbl
[7] Berry–Esseen type bounds for the left random walk on under polynomial moment conditions (2021) (https://hal.archives-ouvertes.fr/hal-03329189/document)
[8] Berry–Esseen bound and local limit theorem for the coefficients of products of random matrices (2021) (https://arxiv.org/abs/2110.09032)
[9] Random walks on SL: spectral gap and local limit theorems (2021) (https://arxiv.org/abs/2106.04019)
[10] Products of Random Matrices, Ann. Math. Stat., Volume 31 (1960) no. 2, pp. 457-469 | DOI | MR | Zbl
[11] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 3, pp. 483-512 | DOI | Zbl
[12] Berry–Esseen bounds for econometric time series, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 6 (2009), pp. 377-397 | MR | Zbl
[13] Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) (Lecture Notes in Mathematics), Volume 928, Springer, 1982, pp. 258-303 | DOI | Zbl
[14] Berry–Esseen bounds and moderate deviations for the random walk on , Stochastic Processes Appl., Volume 142 (2021), pp. 293-318 | DOI | Zbl
[15] Limit theorems for the coefficients of random walks on the general linear group (2021) (https://hal.archives-ouvertes.fr/hal-03438876/document)
Cited by Sources:
Comments - Policy