Comptes Rendus
Probability theory
Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d ()
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 475-482.

We give rates of convergence in the Central Limit Theorem for the matrix coefficients and the spectral radius of the left random walk on GL d (), assuming the existence of an exponential or polynomial moment.

Nous donnons des vitesses de convergence dans le théorème limite central pour les coefficients matriciels et pour le rayon spectral de la marche aléatoire gauche sur GL d (), en supposant l’existence d’un moment exponentiel ou polynomial.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.312
Classification: 60F05, 60B15, 60G50
Christophe Cuny 1; Jérôme Dedecker 2; Florence Merlevède 3; Magda Peligrad 4

1 Univ. Brest, LMBA, UMR 6205 CNRS, 6 avenue Victor Le Gorgeu, 29238 Brest, France
2 Université Paris Cité, MAP5, UMR 8145 CNRS, 45 rue des Saints-Pères, F-75006 Paris, France
3 Univ. Gustave Eiffel, Univ. Paris Est Créteil, UMR 8050 CNRS, LAMA, F-77454 Marne-la-Vallée, France
4 Department of Mathematical Sciences, University of Cincinnati, PO Box 210025, Cincinnati, Oh 45221-0025, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G5_475_0,
     author = {Christophe Cuny and J\'er\^ome Dedecker and Florence Merlev\`ede and Magda Peligrad},
     title = {Berry{\textendash}Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--482},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.312},
     language = {en},
}
TY  - JOUR
AU  - Christophe Cuny
AU  - Jérôme Dedecker
AU  - Florence Merlevède
AU  - Magda Peligrad
TI  - Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 475
EP  - 482
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.312
LA  - en
ID  - CRMATH_2022__360_G5_475_0
ER  - 
%0 Journal Article
%A Christophe Cuny
%A Jérôme Dedecker
%A Florence Merlevède
%A Magda Peligrad
%T Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$
%J Comptes Rendus. Mathématique
%D 2022
%P 475-482
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.312
%G en
%F CRMATH_2022__360_G5_475_0
Christophe Cuny; Jérôme Dedecker; Florence Merlevède; Magda Peligrad. Berry–Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on $GL_d({\protect \mathbb{R}})$. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 475-482. doi : 10.5802/crmath.312. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.312/

[1] Richard Aoun The central limit theorem for eigenvalues, Proc. Am. Math. Soc., Volume 149 (2021) no. 2, pp. 859-873 | DOI | MR | Zbl

[2] Yves Benoist; Jean-François Quint Central limit theorem for linear groups, Ann. Probab., Volume 44 (2016) no. 2, pp. 1308-1340 | MR | Zbl

[3] Yves Benoist; Jean-François Quint Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 62, Springer, 2016 | DOI | Zbl

[4] Philippe Bougerol; Jean Lacroix Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985 | DOI | Zbl

[5] Christophe Cuny; Jérôme Dedecker; Christophe Jan Limit theorems for the left random walk on GL d (), Ann. Inst. Henri Poincaré, Probab. Stat., Volume 53 (2017) no. 4, pp. 1839-1865 | MR | Zbl

[6] Christophe Cuny; Jérôme Dedecker; Florence Merlevède Large and moderate deviations for the left random walk on GL d (), ALEA, Lat. Am. J. Probab. Math. Stat., Volume 14 (2017) no. 1, pp. 503-527 | DOI | Zbl

[7] Christophe Cuny; Jérôme Dedecker; Florence Merlevède; Magda Peligrad Berry–Esseen type bounds for the left random walk on GL d () under polynomial moment conditions (2021) (https://hal.archives-ouvertes.fr/hal-03329189/document)

[8] Tien-Cuong Dinh; Lucas Kaufmann; Hao Wu Berry–Esseen bound and local limit theorem for the coefficients of products of random matrices (2021) (https://arxiv.org/abs/2110.09032)

[9] Tien-Cuong Dinh; Lucas Kaufmann; Hao Wu Random walks on SL 2 (): spectral gap and local limit theorems (2021) (https://arxiv.org/abs/2106.04019)

[10] Hillel Furstenberg; Harry Kesten Products of Random Matrices, Ann. Math. Stat., Volume 31 (1960) no. 2, pp. 457-469 | DOI | MR | Zbl

[11] Yves Guivarc’h Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 3, pp. 483-512 | DOI | Zbl

[12] Siegfried Hörmann Berry–Esseen bounds for econometric time series, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 6 (2009), pp. 377-397 | MR | Zbl

[13] Emile Le Page Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) (Lecture Notes in Mathematics), Volume 928, Springer, 1982, pp. 258-303 | DOI | Zbl

[14] Hui Xiao; Ion Grama; Quansheng Liu Berry–Esseen bounds and moderate deviations for the random walk on GL d (), Stochastic Processes Appl., Volume 142 (2021), pp. 293-318 | DOI | Zbl

[15] Hui Xiao; Ion Grama; Quansheng Liu Limit theorems for the coefficients of random walks on the general linear group (2021) (https://hal.archives-ouvertes.fr/hal-03438876/document)

Cited by Sources:

Comments - Policy


Articles of potential interest

Cramér-type moderate deviations for stationary sequences of bounded random variables

Xiequan Fan

C. R. Math (2019)


An invariance principle for non-adapted processes

Jana Klicnarová; Dalibor Volný

C. R. Math (2007)


Vitesses de convergence dans la loi forte des grands nombres pour des variables dépendantes

Jérôme Dedecker; Florence Merlevède

C. R. Math (2004)