Received:

Accepted:

Published online:

DOI:
10.5802/crmath.316

Accepted:

Published online:

Author's affiliations:

Theo McKenzie ^{1}

License: CC-BY 4.0

Copyrights: The authors retain unrestricted copyrights and publishing rights

@article{CRMATH_2022__360_G4_399_0, author = {Theo McKenzie}, title = {The necessity of conditions for graph quantum ergodicity and {Cartesian} products with an infinite graph}, journal = {Comptes Rendus. Math\'ematique}, pages = {399--408}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.316}, language = {en}, }

TY - JOUR AU - Theo McKenzie TI - The necessity of conditions for graph quantum ergodicity and Cartesian products with an infinite graph JO - Comptes Rendus. Mathématique PY - 2022 SP - 399 EP - 408 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.316 LA - en ID - CRMATH_2022__360_G4_399_0 ER -

Theo McKenzie. The necessity of conditions for graph quantum ergodicity and Cartesian products with an infinite graph. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 399-408. doi : 10.5802/crmath.316. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.316/

[1] Resonant delocalization for random Schrödinger operators on tree graphs, J. Eur. Math. Soc., Volume 15 (2013) no. 4, pp. 1167-1222 | DOI | Zbl

[2] High-girth near-Ramanujan graphs with localized eigenvectors (2019) (https://arxiv.org/abs/1908.03694)

[3] Quantum ergodicity on regular graphs, Commun. Math. Phys., Volume 353 (2017) no. 2, pp. 633-690 | DOI | MR | Zbl

[4] Quantum ergodicity for expanding quantum graphs in the regime of spectral delocalization, J. Math. Pures Appl., Volume 151 (2021), pp. 28-98 | DOI | MR | Zbl

[5] Quantum ergodicity on large regular graphs, Duke Math. J., Volume 164 (2015) no. 4, pp. 723-765 | MR | Zbl

[6] Quantum ergodicity for the Anderson model on regular graphs, J. Math. Phys., Volume 58 (2017) no. 9, 091901, 10 pages | MR | Zbl

[7] Quantum ergodicity on graphs: from spectral to spatial delocalization, Ann. Math., Volume 189 (2019) no. 3, pp. 753-835 | MR | Zbl

[8] Recent results of quantum ergodicity on graphs and further investigation, Ann. Fac. Sci. Toulouse, Math., Volume 28 (2019) no. 3, pp. 559-592 | DOI | Numdam | MR | Zbl

[9] Eigenvectors of random graphs: delocalization and nodal domains (2011) (http://www.cs.princeton.edu/~bhaskara/files/deloc.pdf)

[10] On the almost eigenvectors of random regular graphs, Ann. Probab., Volume 47 (2019) no. 3, pp. 1677-1725 | MR | Zbl

[11] Local Kesten–McKay law for random regular graphs, Commun. Math. Phys., Volume 369 (2019) no. 2, pp. 523-636 | DOI | MR | Zbl

[12] Recurrence of distributional limits of finite planar graphs, Electron. J. Probab., Volume 6 (2001) no. 23, pp. 533-545 | MR | Zbl

[13] Quantum ergodicity and averaging operators on the sphere, Int. Math. Res. Not., Volume 2016 (2016) no. 19, pp. 6034-6064 | DOI | MR | Zbl

[14] Non-localization of eigenfunctions on large regular graphs, Isr. J. Math., Volume 193 (2013) no. 1, pp. 1-14 | DOI | MR | Zbl

[15] Laplacians of graphs and Cheeger’s inequalities, Combinatorics, Paul Erdos is Eighty. Vol. 2 (Bolyai Society Mathematical Studies), Volume 2, János Bolyai Mathematical Society, 1996, pp. 157-172 | MR | Zbl

[16] Discrete Green’s functions, J. Comb. Theory, Ser. A, Volume 91 (2000) no. 1-2, pp. 191-214 | DOI | MR

[17] Eigenspaces of graphs, Encyclopedia of Mathematics and Its Applications, 66, Cambridge University Press, 1997 | DOI

[18] Ergodicité et fonctions propres du laplacien, Commun. Math. Phys., Volume 102 (1985) no. 3, pp. 497-502 | DOI | Numdam | Zbl

[19] Eigenvectors of random graphs: Nodal domains, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (Lecture Notes in Computer Science), Volume 4627, Springer, 2007, pp. 436-448 | DOI | Zbl

[20] Discrete Green’s functions for products of regular graphs (2003) (https://arxiv.org/abs/math/0309080)

[21] On non-localization of eigenvectors of high girth graphs, Int. Math. Res. Not., Volume 2021 (2021) no. 8, pp. 5766-5790 | DOI | MR | Zbl

[22] Size of nodal domains of the eigenvectors of a graph, Random Struct. Algorithms, Volume 57 (2020) no. 2, pp. 393-438 | DOI | MR | Zbl

[23] Spectrum of Random $d$-regular Graphs Up to the Edge (2021) (https://arxiv.org/abs/2102.00963)

[24] Quantum ergodicity for large equilateral quantum graphs, J. Lond. Math. Soc., Volume 101 (2020) no. 1, pp. 82-109 | DOI | MR | Zbl

[25] Quantum chaos on graphs, Phys. Rev. Lett., Volume 79 (1997) no. 24, p. 4794 | DOI

[26] Periodic orbit theory and spectral statistics for quantum graphs, Ann. Phys., Volume 274 (1999) no. 1, pp. 76-124 | DOI | MR | Zbl

[27] High-girth near-Ramanujan graphs with lossy vertex expansion (2020) (https://arxiv.org/abs/2007.13630)

[28] Ergodic properties of eigenfunctions, Usp. Mat. Nauk, Volume 29 (1974) no. 6, pp. 181-182 | MR

[29] Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J., Volume 55 (1987) no. 4, pp. 919-941 | MR | Zbl

[30] Quantum ergodicity and mixing of eigenfunctions (2005) (https://arxiv.org/abs/math-ph/0503026)

*Cited by Sources: *

Comments - Policy

Articles of potential interest

Graph eigenfunctions and quantum unique ergodicity

Shimon Brooks; Elon Lindenstrauss

C. R. Math (2010)

On the growth of Betti numbers of locally symmetric spaces

Miklos Abert; Nicolas Bergeron; Ian Biringer; ...

C. R. Math (2011)

Critical percolation on any quasi-transitive graph of exponential growth has no infinite clusters

Tom Hutchcroft

C. R. Math (2016)