The Erdős primitive set conjecture states that the sum
Révisé le :
Accepté le :
Publié le :
Jared Duker Lichtman 1

@article{CRMATH_2022__360_G4_409_0, author = {Jared Duker Lichtman}, title = {Translated sums of primitive sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {409--414}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.285}, language = {en}, }
Jared Duker Lichtman. Translated sums of primitive sets. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 409-414. doi : 10.5802/crmath.285. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.285/
[1] Optimal primitive sets with restricted primes, Integers, Volume 13 (2013), A69, 10 pages | MR | Zbl
[2] High precision computation of Hardy-Littlewood constants (https://www.math.u-bordeaux.fr/~hecohen/)
[3] Note on sequences of integers no one of which is divisible by any other, J. Lond. Math. Soc., Volume 10 (1935), pp. 126-128 | DOI | MR | Zbl
[4] Note on translated sum on primitive sequences, Notes Number Theory Discrete Math., Volume 27 (2021) no. 3, pp. 39-43 | DOI
[5] Somme translatée sur des suites primitives et la conjecture d’Erdős, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 5, pp. 413-417 | DOI | Zbl
[6] Almost primes and the Banks–Martin conjecture, J. Number Theory, Volume 211 (2020), pp. 513-529 | DOI | MR | Zbl
[7] Mertens’ prime product formula, dissected, Integers, Volume 21A (2021), A17, 15 pages | DOI | MR | Zbl
[8] The Erdős conjecture for primitive sets, Proc. Am. Math. Soc., Volume 6 (2019), pp. 1-14 | DOI | Zbl
[9] On a problem of Erdős concerning primitive sequences, Math. Comput., Volume 60 (1993) no. 202, pp. 827-834 | Zbl
Cité par Sources :
Commentaires - Politique