Comptes Rendus
Théorie des nombres
The existence of 𝔽 q -primitive points on curves using freeness
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 641-652.

Let 𝒞 Q be the cyclic group of order Q, n a divisor of Q and r a divisor of Q/n. We introduce the set of (r,n)-free elements of 𝒞 Q and derive a lower bound for the number of elements θ𝔽 q for which f(θ) is (r,n)-free and F(θ) is (R,N)-free, where f,F𝔽 q [x]. As an application, we consider the existence of 𝔽 q -primitive points on curves like y n =f(x) and find, in particular, all the odd prime powers q for which the elliptic curves y 2 =x 3 ±x contain an 𝔽 q -primitive point.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.328
Classification : 11T30, 11A07, 11T23
Mots clés : finite fields, character sums, elliptic curves

Stephen D. Cohen 1 ; Giorgos Kapetanakis 2 ; Lucas Reis 3

1 6 Bracken Road, Portlethen, Aberdeen AB12 4TA, Scotland, UK
2 Department of Mathematics, University of Thessaly, 3rd km Old National Road Lamia-Athens, 35100 Lamia, Greece
3 Departamento de Matemática, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte MG, 31270901, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G6_641_0,
     author = {Stephen D. Cohen and Giorgos Kapetanakis and Lucas Reis},
     title = {The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {641--652},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.328},
     zbl = {07547263},
     language = {en},
}
TY  - JOUR
AU  - Stephen D. Cohen
AU  - Giorgos Kapetanakis
AU  - Lucas Reis
TI  - The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 641
EP  - 652
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.328
LA  - en
ID  - CRMATH_2022__360_G6_641_0
ER  - 
%0 Journal Article
%A Stephen D. Cohen
%A Giorgos Kapetanakis
%A Lucas Reis
%T The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness
%J Comptes Rendus. Mathématique
%D 2022
%P 641-652
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.328
%G en
%F CRMATH_2022__360_G6_641_0
Stephen D. Cohen; Giorgos Kapetanakis; Lucas Reis. The existence of $\protect \mathbb{F}_q$-primitive points on curves using freeness. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 641-652. doi : 10.5802/crmath.328. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.328/

[1] Andrew R. Booker; Stephen D. Cohen; Nicole Sutherland; Tim Trudgian Primitive values of quadratic polynomials in a finite field, Math. Comput., Volume 88 (2019) no. 318, pp. 1903-1912 | DOI | MR | Zbl

[2] F. E. Brochero Martínez; Lucas Reis Elements of high order in Artin–Schreier extensions of finite fields 𝔽 q , Finite Fields Appl., Volume 41 (2016), pp. 24-33 | DOI | MR | Zbl

[3] Leonard Carlitz Primitive roots in a finite field, Trans. Am. Math. Soc., Volume 73 (1952), pp. 373-382 | DOI | MR | Zbl

[4] Cícero Carvalho; João Paulo Guardieiro; Victor G. L. Neumann; Guilherme Tizziotti On special pairs of primitive elements over a finite field, Finite Fields Appl., Volume 73 (2021), 101839, 10 pages | MR | Zbl

[5] Stephen D. Cohen The orders of related elements of a finite field, Ramanujan J., Volume 7 (2003) no. 1-3, pp. 169-183 | DOI | MR | Zbl

[6] Stephen D. Cohen; Sophie Huczynska The primitive normal basis theorem — without a computer, J. Lond. Math. Soc., Volume 67 (2003) no. 1, pp. 41-56 | DOI | MR | Zbl

[7] Stephen D. Cohen; Giorgos Kapetanakis The trace of 2-primitive elements of finite fields, Acta Arith., Volume 192 (2020) no. 4, pp. 397-419 | DOI | MR | Zbl

[8] Stephen D. Cohen; Giorgos Kapetanakis The translate and line properties for 2-primitive elements in quadratic extensions, Int. J. Number Theory, Volume 16 (2020) no. 9, pp. 2027-2040 | DOI | MR | Zbl

[9] Stephen D. Cohen; Giorgos Kapetanakis Finite field extensions with the line or translate property for r-primitive elements, J. Aust. Math. Soc., Volume 111 (2021) no. 3, pp. 311-319 | MR | Zbl

[10] Stephen D. Cohen; Tomás Oliveira e Silva; Nicole Sutherland; Tim Trudgian Linear combinations of primitive elements of a finite field, Finite Fields Appl., Volume 51 (2018), pp. 388-406 | DOI | MR | Zbl

[11] Stephen D. Cohen; Tomás Oliveira e Silva; Tim Trudgian A proof of the conjecture of Cohen and Mullen on sums of primitive roots, Math. Comput., Volume 84 (2015) no. 296, pp. 2979-2986 | DOI | MR | Zbl

[12] Shuhong Gao Elements of provable high orders in finite fields, Proc. Am. Math. Soc., Volume 127 (1999) no. 6, pp. 1615-1623 | MR | Zbl

[13] Sophie Huczynska; Gary L. Mullen; Daniel Panario; David Thomson Existence and properties of k-normal elements over finite fields, Finite Fields Appl., Volume 24 (2013), pp. 170-183 | DOI | MR | Zbl

[14] Giorgos Kapetanakis; Lucas Reis Variations of the primitive normal basis theorem, Des. Codes Cryptography, Volume 87 (2018) no. 7, pp. 1459-1480 | DOI | MR | Zbl

[15] Serge Lang; Hale Trotter Primitive points on elliptic curves, Bull. Am. Math. Soc., Volume 83 (1977), pp. 289-292 | DOI | MR | Zbl

[16] Rudolf Lidl; Harald Niederreiter Finite Fields, Encyclopedia of Mathematics and Its Applications, 20, Cambridge University Press, 1996 | DOI

[17] Handbook of Finite Fields (Gary L. Mullen; Daniel Panario, eds.), Discrete Mathematics and its Applications, CRC Press, 2013

[18] Roman Popovych Elements of high order in finite fields of the form F q [x]/(x m -a), Finite Fields Appl., Volume 19 (2013), p. 96-92 | MR | Zbl

Cité par Sources :

Commentaires - Politique