[Points normaux sur les courbes d’Artin–Schreier sur des corps finis]
In 2022, S. D. Cohen and the two authors introduced and studied the concept of
En 2022, S. D. Cohen et les deux auteurs ont introduit et étudié le concept de
Révisé le :
Accepté le :
Publié le :
Keywords: Finite fields, character sums, normal elements, free elements, Artin–Schreier curves
Mots-clés : Corps finis, sommes de caractères, éléments normaux, éléments libres, courbes d’Artin–Schreier
Giorgos Kapetanakis 1 ; Lucas Reis 2

@article{CRMATH_2025__363_G6_541_0, author = {Giorgos Kapetanakis and Lucas Reis}, title = {Normal points on {Artin{\textendash}Schreier} curves over finite fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {541--554}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.740}, language = {en}, }
Giorgos Kapetanakis; Lucas Reis. Normal points on Artin–Schreier curves over finite fields. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 541-554. doi : 10.5802/crmath.740. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.740/
[1] Existence of primitive 2-normal elements in finite fields, Finite Fields Appl., Volume 73 (2021), 101864, 26 pages | DOI | MR | Zbl
[2] Existence results for primitive elements in cubic and quartic extensions of a finite field, Math. Comput., Volume 88 (2019) no. 316, pp. 931-947 | DOI | MR | Zbl
[3] Primitive element pairs with a prescribed trace in the cubic extension of a finite field, Bull. Aust. Math. Soc., Volume 106 (2022) no. 3, pp. 458-462 | DOI | MR | Zbl
[4] The primitive normal basis theorem—without a computer, J. Lond. Math. Soc. (2), Volume 67 (2003) no. 1, pp. 41-56 | DOI | MR | Zbl
[5] The existence of
[6] New directions in cryptography, IEEE Trans. Inf. Theory, Volume 22 (1976) no. 6, pp. 644-654 | DOI | MR | Zbl
[7] Normal basis over finite fields, Ph. D. Thesis, University of Waterloo (Canada) (1993)
[8] Existence and properties of
[9] Variations of the primitive normal basis theorem, Des. Codes Cryptography, Volume 87 (2019) no. 7, pp. 1459-1480 | DOI | MR | Zbl
[10] Primitive normal bases for finite fields, Math. Comput., Volume 48 (1987) no. 177, pp. 217-231 | DOI | MR | Zbl
[11] Finite fields, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 1997 no. 20, xiv+755 pages | MR
[12] Counting solutions of special linear equations over finite fields, Finite Fields Appl., Volume 68 (2020), 101759, 9 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier