Comptes Rendus
Geometry and Topology, Representation theory
The Burau representations of loop braid groups
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 781-797.

We give a simple topological construction of the Burau representations of the loop braid groups. There are four versions: defined either on the non-extended or extended loop braid groups, and in each case there is an unreduced and a reduced version. Three are not surprising, and one could easily guess the correct matrices to assign to generators. The fourth is more subtle, and does not seem combinatorially obvious, although it is topologically very natural.

Nous donnons une construction topologique simple et naturelle des représentations de Burau des groupes de tresses soudées. Il en existe en fait quatre versions : ces représentations peuvent être définies pour les groupes de tresses soudées étendues ou non étendues, et dans ces deux cas, il y a une version réduite et une autre non réduite. Pour trois d’entre elles, d’un point de vue rigoureusement algébrique, on peut aisément déterminer les matrices correspondant aux générateurs des groupes considérés. En revanche, la quatrième est plus subtile et ne semble pas évidente à déterminer d’un strict point de vue combinatoire, alors qu’elle est topologiquement très naturelle à définir.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.338
Classification: 20C12, 20F36, 20J05, 57M07, 57M10
Martin Palmer 1; Arthur Soulié 2

1 Institutul de Matematică Simion Stoilow al Academiei Române, 21 Calea Griviței, 010702 București, România
2 University of Glasgow, School of Mathematics and Statistics, 132 University Pl, Glasgow G12 8TA, United Kingdom
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G7_781_0,
     author = {Martin Palmer and Arthur Souli\'e},
     title = {The {Burau} representations of loop braid groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {781--797},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.338},
     language = {en},
}
TY  - JOUR
AU  - Martin Palmer
AU  - Arthur Soulié
TI  - The Burau representations of loop braid groups
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 781
EP  - 797
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.338
LA  - en
ID  - CRMATH_2022__360_G7_781_0
ER  - 
%0 Journal Article
%A Martin Palmer
%A Arthur Soulié
%T The Burau representations of loop braid groups
%J Comptes Rendus. Mathématique
%D 2022
%P 781-797
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.338
%G en
%F CRMATH_2022__360_G7_781_0
Martin Palmer; Arthur Soulié. The Burau representations of loop braid groups. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 781-797. doi : 10.5802/crmath.338. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.338/

[1] John C. Baez; Derek K. Wise; Alissa S. Crans Exotic statistics for strings in 4D BF theory, Adv. Theor. Math. Phys., Volume 11 (2007) no. 5, pp. 707-749 | DOI | MR | Zbl

[2] Valerij G. Bardakov Extending representations of braid groups to the automorphism groups of free groups, J. Knot Theory Ramifications, Volume 14 (2005) no. 8, pp. 1087-1098 | DOI | MR | Zbl

[3] Paolo Bellingeri; Arnaud Bodin The braid group of a necklace, Math. Z., Volume 283 (2016) no. 3-4, pp. 995-1010 | DOI | MR | Zbl

[4] Paolo Bellingeri; Arthur Soulié A note on representations of welded braid groups, J. Knot Theory Ramifications, Volume 29 (2020) no. 12, 2050082 | DOI | MR | Zbl

[5] Stephen Bigelow The Burau representation is not faithful for n=5, Geom. Topol., Volume 3 (1999), pp. 397-404 | DOI | MR | Zbl

[6] Stephen Bigelow Homological representations of the Iwahori-Hecke algebra, Proceedings of the Casson Fest (Geometry and Topology Monographs), Volume 7 (2004), pp. 493-507 | DOI | MR | Zbl

[7] Ernst Binz; Hans R. Fischer The manifold of embeddings of a closed manifold, Differential geometric methods in mathematical physics (Proc. Internat. Conf., Tech. Univ. Clausthal, Clausthal-Zellerfeld, 1978) (Lecture Notes in Physics), Volume 139 (1981), pp. 310-329 (with an appendix by P. Michor) | MR

[8] Tara E. Brendle; Allen E. Hatcher Configuration spaces of rings and wickets, Comment. Math. Helv., Volume 88 (2013) no. 1, pp. 131-162 | DOI | MR | Zbl

[9] Alan Brownstein; Ronnie Lee Cohomology of the group of motions of n strings in 3-space, Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) (Contemporary Mathematics), Volume 150, American Mathematical Society, 1993, pp. 51-61 | DOI | MR | Zbl

[10] Werner Burau Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 11 (1935), pp. 179-186 | DOI | Zbl

[11] Jean Cerf Topologie de certains espaces de plongements, Bull. Soc. Math. Fr., Volume 89 (1961), pp. 227-380 | DOI | Numdam | MR | Zbl

[12] Donald J. Collins Cohomological dimension and symmetric automorphisms of a free group, Comment. Math. Helv., Volume 64 (1989) no. 1, pp. 44-61 | DOI | MR | Zbl

[13] David Michael Dahm A generalization of braid theory, ProQuest LLC, 1962, 59 pages Thesis (Ph.D.)–Princeton University | MR

[14] Celeste Damiani A journey through loop braid groups, Expo. Math., Volume 35 (2017) no. 3, pp. 252-285 | DOI | MR | Zbl

[15] Celeste Damiani; Paul Martin; Eric C. Rowell Generalisations of Hecke algebras from Loop Braid Groups (2020) (http://arxiv.org/abs/2008.04840)

[16] Roger Fenn; Richárd Rimányi; Colin Rourke The braid-permutation group, Topology, Volume 36 (1997) no. 1, pp. 123-135 | DOI | MR | Zbl

[17] Deborah L. Goldsmith The theory of motion groups, Mich. Math. J., Volume 28 (1981) no. 1, pp. 3-17 | MR | Zbl

[18] Allen E. Hatcher A proof of the Smale conjecture, Diff (S 3 )O(4), Ann. Math., Volume 117 (1983) no. 3, pp. 553-607 | DOI | MR | Zbl

[19] Abdoulrahim Ibrahim On matrix representations for generalized braid groups (2021) (http://arxiv.org/abs/2109.03583)

[20] Craig Jensen; Jon McCammond; John Meier The integral cohomology of the group of loops, Geom. Topol., Volume 10 (2006), pp. 759-784 | DOI | MR | Zbl

[21] Zoltán Kádár; Paul Martin; Eric C. Rowell; Zhenghan Wang Local representations of the loop braid group, Glasg. Math. J., Volume 59 (2017) no. 2, pp. 359-378 | DOI | MR | Zbl

[22] Christian Kassel; Vladimir Turaev Braid groups, Graduate Texts in Mathematics, 247, Springer, 2008, xii+340 pages (with the graphical assistance of Olivier Dodane) | DOI | MR

[23] R. J. Lawrence Homological representations of the Hecke algebra, Commun. Math. Phys., Volume 135 (1990) no. 1, pp. 141-191 | DOI | MR | Zbl

[24] Elon L. Lima On the local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 38 (1963), pp. 163-164 | DOI | MR

[25] Darren D. Long; Martin Paton The Burau representation is not faithful for n6, Topology, Volume 32 (1993) no. 2, pp. 439-447 | DOI | MR | Zbl

[26] James McCool On basis-conjugating automorphisms of free groups, Can. J. Math., Volume 38 (1986) no. 6, pp. 1525-1529 | DOI | MR | Zbl

[27] John Atwell Moody The Burau representation of the braid group B n is unfaithful for large n, Bull. Am. Math. Soc., Volume 25 (1991) no. 2, pp. 379-384 | DOI | MR | Zbl

[28] Richard S. Palais Local triviality of the restriction map for embeddings, Comment. Math. Helv., Volume 34 (1960), pp. 305-312 | DOI | MR | Zbl

[29] Martin Palmer Homological stability for moduli spaces of disconnected submanifolds, I, Algebr. Geom. Topol., Volume 21-3 (2021), pp. 1371-1444 | DOI | MR | Zbl

[30] Martin Palmer; Arthur Soulié Topological representations of motion groups and mapping class groups – a unified functorial construction (2021) (https://arxiv.org/abs/1910.13423v4)

[31] Martin Palmer; Arthur Soulié Irreducibility and polynomiality of motion group and mapping class group representations (2022) (preprint in progress, to be posted on the arXiv soon)

[32] Martin Palmer; Arthur Soulié Verifying the extended loop braid relations for the reduced Burau representation of LB 4 (2022) (supplementary materials for the present article; available at either https://mdp.ac/papers/loop-Burau/index.html or https://arxiv.org/src/2109.11468v2/anc)

[33] Vladimir V. Vershinin On homology of virtual braids and Burau representation, J. Knot Theory Ramifications, Volume 10 (2001) no. 5, pp. 795-812 Knots in Hellas ’98, Vol. 3 (Delphi) | DOI | MR | Zbl

Cited by Sources:

Comments - Policy


Articles of potential interest

Infinitesimal Hecke algebras

Ivan Marin

C. R. Math (2003)


Perverse sheaves and knot contact homology

Yuri Berest; Alimjon Eshmatov; Wai-Kit Yeung

C. R. Math (2017)


Braids on surfaces and finite type invariants

Paolo Bellingeri; Louis Funar

C. R. Math (2004)