logo CRAS
Comptes Rendus. Mathématique
Control theory
Uniqueness theorem for a coupled system of wave equations with incomplete internal observation and application to approximate controllability
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 729-737.

We show that a Kalman rank condition is necessary and sufficient for the uniqueness of solution to a system of wave equations associated with incomplete internal observation without any restriction neither on the controlled subregion nor on the coupling matrices. The obtained result can be applied to the approximate internal controllability of the corresponding system.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.341
Tatsien Li 1; Bopeng Rao 2

1 Shanghai Key Laboratory for Contemporary Applied Mathematics; Nonlinear Mathematical Modeling and Methods Laboratory, School of Mathematical Sciences, Fudan University, Shanghai 200433, China
2 Institut de Recherche Mathématique Avancée, Université de Strasbourg, 67084 Strasbourg, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G6_729_0,
     author = {Tatsien Li and Bopeng Rao},
     title = {Uniqueness theorem for a coupled system of wave equations with incomplete internal observation and application to approximate controllability},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {729--737},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.341},
     zbl = {07547271},
     language = {en},
}
TY  - JOUR
AU  - Tatsien Li
AU  - Bopeng Rao
TI  - Uniqueness theorem for a coupled system of wave equations with incomplete internal observation and application to approximate controllability
JO  - Comptes Rendus. Mathématique
PY  - 2022
DA  - 2022///
SP  - 729
EP  - 737
VL  - 360
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07547271
UR  - https://doi.org/10.5802/crmath.341
DO  - 10.5802/crmath.341
LA  - en
ID  - CRMATH_2022__360_G6_729_0
ER  - 
%0 Journal Article
%A Tatsien Li
%A Bopeng Rao
%T Uniqueness theorem for a coupled system of wave equations with incomplete internal observation and application to approximate controllability
%J Comptes Rendus. Mathématique
%D 2022
%P 729-737
%V 360
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.341
%R 10.5802/crmath.341
%G en
%F CRMATH_2022__360_G6_729_0
Tatsien Li; Bopeng Rao. Uniqueness theorem for a coupled system of wave equations with incomplete internal observation and application to approximate controllability. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 729-737. doi : 10.5802/crmath.341. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.341/

[1] Luis Aguilar; Yury Orlov; Alessandro Pisano Leader-follower synchronization and ISS analysis for a network of boundary-controlled wave PDEs, IEEE Control Sys. Lett., Volume 5 (2021) no. 2, pp. 683-688 | DOI | MR

[2] Fatiha Alabau-Boussouira A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems, SIAM J. Control Optim., Volume 42 (2003) no. 3, pp. 871-903 | DOI | MR | Zbl

[3] Fatiha Alabau-Boussouira A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE’s by a reduced number of controls, Adv. Differ. Equ., Volume 18 (2013) no. 11-12, pp. 1005-1073 | MR | Zbl

[4] Farid Ammar-Khodja; Assia Benabdallah; Cédric Dupaix; Manuel González-Burgos A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems, Differ. Equ. Appl., Volume 1 (2009) no. 3, pp. 427-457 | MR

[5] Farid Ammar-Khodja; Assia Benabdallah; Cédric Dupaix; Manuel González-Burgos A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems, J. Evol. Equ., Volume 9 (2009) no. 2, pp. 267-291 | DOI | Zbl

[6] Alampallam V. Balakrishnan Applied Functional Analysis, Applications of Mathematics, 3, Springer, 1976

[7] Thierry Cazenave; Alain Haraux An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13, Clarendon Press, 1998

[8] Belhassen Dehman; Jérôme Le Rousseau; Matthieu Léautaud Controllability of two coupled wave equations on a compact manifold, Arch. Ration. Mech. Anal., Volume 211 (2014) no. 1, pp. 113-187 | DOI | MR | Zbl

[9] Michael A. Demetriou; Fariba Fahroo Optimisation and adaptation of synchronisation controllers for networked second-order infinite-dimensional systems, Int. J. Control, Volume 92 (2019) no. 1, pp. 112-131 | DOI | MR | Zbl

[10] Alain Haraux A generalized internal control for the wave equation in a rectangle, J. Math. Anal. Appl., Volume 153 (1990) no. 1, pp. 190-216 | DOI | MR | Zbl

[11] Rudolf E. Kalman Contributions to the theory of optimal control, Bol. Soc. Mat. Mex., II. Ser., Volume 5 (1960), pp. 102-119 | MR | Zbl

[12] John Lagnese Control of wave processes with distributed controls on a subregion, SIAM J. Control Optim., Volume 21 (1983), pp. 68-85 | DOI | MR | Zbl

[13] Tatsien Li; Bopeng Rao Approximate internal controllability and synchronization of a coupled system of wave equations (in course)

[14] Tatsien Li; Bopeng Rao Criteria of Kalman type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM J. Control Optim., Volume 54 (2016) no. 1, pp. 49-73 | MR | Zbl

[15] Tatsien Li; Bopeng Rao Kalman criterion on the uniqueness of continuation for the nilpotent system of wave equations, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 11-12, pp. 1188-1192 | MR | Zbl

[16] Tatsien Li; Bopeng Rao Boundary synchronization for hyperbolic systems, Progress in Nonlinear Differential Equations and their Applications, 94, Birkhäuser, 2019

[17] Tatsien Li; Bopeng Rao Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 117, 26 pages | DOI | MR | Zbl

[18] Tatsien Li; Bopeng Rao Approximate boundary synchronization by groups for a couples system of wave equationswith coupled Robin boundary conditions, ESAIM, Control Optim. Calc. Var., Volume 27 (2021), 10, 30 pages | Zbl

[19] Jacques-Louis Lions Quelques méthodes de résolution des problèmes aux limites non linéaires, Études mathématiques, Gauthier-Villars, 1969 | Numdam

[20] Jacques-Louis Lions Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1: Contrôlabilité exacte, Recherches en Mathématiques Appliquées, 8, Masson, 1988

[21] Pierre Lissy; Enrique Zuazua Internal controllability for parabolic systems involving analytic non-local terms, Chin. Ann. Math., Ser. B, Volume 39 (2018) no. 2, pp. 281-296 | DOI | MR | Zbl

[22] Pierre Lissy; Enrique Zuazua Internal observability for coupled systems of linear partial differential equations, SIAM J. Control Optim., Volume 57 (2019) no. 2, pp. 832-853 | DOI | MR | Zbl

[23] Zhuangyi Liu; Bopeng Rao A spectral approach to the indirect boundary control of a system of weakly coupled wave equations, Discrete Contin. Dyn. Syst., Volume 23 (2009) no. 1-2, pp. 399-413 | MR | Zbl

[24] Amnon Pazy Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer, 1982

[25] Lionel Rosier; Luz de Teresa Exact controllability of a cascade system of conservative equations, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 5-6, pp. 291-295 | DOI | MR | Zbl

[26] David L. Russell Nonharmonic Fourier series in the control theory of distributed parameter systems, J. Math. Anal. Appl., Volume 18 (1967), pp. 542-560 | DOI | MR | Zbl

[27] Lijuan Wang; Qishu Yan Optimal control problem for exact synchronization of parabolic system, Math. Control Relat. Fields, Volume 9 (2019) no. 3, pp. 411-424 | DOI | MR | Zbl

[28] Chengxia Zu; Tatsien Li; Bopeng Rao Sufficiency of Kalman rank condition for the approximate boundary controllability on spherical domain, Math. Methods Appl. Sci., Volume 44 (2021) no. 17, pp. 13509-13525 | MR | Zbl

Cited by Sources: