[Critère de Kalman sur l'unicité de la continuation pour le système nilpotent d'équations des ondes]
Dans cette Note, nous considérons un système d'équations des ondes couplées par une matrice nilpotente avec la condition aux limites homogène de Dirichlet. Nous établissons l'unicité de la solution si l'observation partielle de Neumann satisfait le critère de Kalman.
In this Note, we consider a system of wave equations coupled by a nilpotent matrix with homogeneous Dirichlet boundary condition. We establish the uniqueness of the solution when partial Neumann observation satisfies Kalman's rank condition.
Accepté le :
Publié le :
Tatsien Li 1, 2, 3 ; Bopeng Rao 1, 4
@article{CRMATH_2018__356_11-12_1188_0, author = {Tatsien Li and Bopeng Rao}, title = {Kalman's criterion on the uniqueness of continuation for the nilpotent system of wave equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1188--1194}, publisher = {Elsevier}, volume = {356}, number = {11-12}, year = {2018}, doi = {10.1016/j.crma.2018.09.006}, language = {en}, }
TY - JOUR AU - Tatsien Li AU - Bopeng Rao TI - Kalman's criterion on the uniqueness of continuation for the nilpotent system of wave equations JO - Comptes Rendus. Mathématique PY - 2018 SP - 1188 EP - 1194 VL - 356 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2018.09.006 LA - en ID - CRMATH_2018__356_11-12_1188_0 ER -
Tatsien Li; Bopeng Rao. Kalman's criterion on the uniqueness of continuation for the nilpotent system of wave equations. Comptes Rendus. Mathématique, Volume 356 (2018) no. 11-12, pp. 1188-1194. doi : 10.1016/j.crma.2018.09.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2018.09.006/
[1] A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls, Adv. Differ. Equ., Volume 18 (2013), pp. 1005-1072
[2] Null-controllability of some reaction–diffusion systems with one control force, J. Math. Anal. Appl., Volume 320 (2006), pp. 928-944
[3] Linear Partial Differential Operators, Springer-Verlag, 1976
[4] Exact synchronization for a coupled system of wave equations with Dirichlet boundary controls, Chin. Ann. Math., Ser. B, Volume 34 (2013), pp. 139-160
[5] Asymptotic controllability and asymptotic synchronization for a coupled system of wave equations with Dirichlet boundary controls, Asymptot. Anal., Volume 86 (2014), pp. 199-226
[6] Criteria of Kalman's type to the approximate controllability and the approximate synchronization for a coupled system of wave equations with Dirichlet boundary controls, SIAM J. Control Optim., Volume 54 (2016), pp. 49-72
[7] Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, vol. 1, Masson, Paris, 1986
- Approximate internal controllability and synchronization of a coupled system of wave equations, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 30 (2024), p. 21 (Id/No 1) | DOI:10.1051/cocv/2023008 | Zbl:1532.93022
- Approximate Internal Controllability, Synchronization for Wave Equations with Locally Distributed Controls, Volume 5 (2024), p. 15 | DOI:10.1007/978-981-97-0992-2_3
- Exactly synchronizable state and approximate controllability for a coupled system of wave equations with locally distributed controls, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 3, pp. 1460-1471 | DOI:10.1137/22m1488430 | Zbl:1519.93033
- Uniqueness theorem for a coupled system of wave equations with incomplete internal observation and application to approximate controllability, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 360 (2022), pp. 729-737 | DOI:10.5802/crmath.341 | Zbl:1497.93020
- Generalized approximate boundary synchronization for a coupled system of wave equations, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 7, pp. 5309-5325 | DOI:10.1002/mma.7111 | Zbl:1471.35196
- Uniqueness of solution to systems of elliptic operators and application to asymptotic synchronization of linear dissipative systems, European Series in Applied and Industrial Mathematics (ESAIM): Control, Optimization and Calculus of Variations, Volume 26 (2020), p. 26 (Id/No 117) | DOI:10.1051/cocv/2020062 | Zbl:1461.93416
Cité par 6 documents. Sources : Crossref, zbMATH
Commentaires - Politique