The Grassmann convexity conjecture, formulated in [8], gives a conjectural formula for the maximal total number of real zeroes of the consecutive Wronskians of an arbitrary fundamental solution to a disconjugate linear ordinary differential equation with real time. The conjecture can be reformulated in terms of convex curves in the nilpotent lower triangular group. The formula has already been shown to be a correct lower bound and to give a correct upper bound in several small dimensional cases. In this paper we obtain a general explicit upper bound.
La conjecture sur la convexité du Grassmannien formulée dans [8] suggère une formule pour le nombre total maximal de zéros réels des Wronskiens consécutifs d’une solution fondamentale arbitraire d’un système disconjugué d’équations différentielles ordinaires linéaires à temps réel. La conjecture peut être formulée en termes de courbes convexes dans le groupe nilpotent triangulaire inférieur. Il a déjà été prouvé que la formule donne une borne inférieure correcte et que dans plusieurs cas de basse dimension, elle donne la borne supérieure correcte. Dans cet article nous obtenons une borne supérieure explicite générale.
Revised:
Accepted:
Published online:
Nicolau Saldanha 1; Boris Shapiro 2; Michael Shapiro 3, 4
@article{CRMATH_2023__361_G2_445_0, author = {Nicolau Saldanha and Boris Shapiro and Michael Shapiro}, title = {Finiteness of rank for {Grassmann} convexity}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--451}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.343}, language = {en}, }
Nicolau Saldanha; Boris Shapiro; Michael Shapiro. Finiteness of rank for Grassmann convexity. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 445-451. doi : 10.5802/crmath.343. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.343/
[1] Parametrizations of Canonical Bases and Totally Positive Matrices, Adv. Math., Volume 122 (1996) no. 1, pp. 49-149 | DOI | Zbl
[2] Disconjugacy, Lecture Notes in Mathematics, 220, Springer, 1971 | DOI | Zbl
[3] Combinatorialization of spaces of nondegenerate spherical curves (2018) (https://arxiv.org/abs/1810.08632)
[4] Stratification by itineraries of spaces of locally convex curves (2019) (https://arxiv.org/abs/1907.01659v1)
[5] Locally convex curves and the Bruhat stratification of the spin group, Isr. J. Math., Volume 242 (2021) no. 2, pp. 565-604 | DOI | Zbl
[6] On disconjugate differential equations, Trans. Am. Math. Soc., Volume 134 (1968) no. 1, pp. 53-70 | DOI | Zbl
[7] Grassmann convexity and multiplicative Sturm theory, revisited, Mosc. Math. J., Volume 21 (2021) no. 3, pp. 613-637 | DOI | Zbl
[8] Projective convexity in implies Grassmann convexity, Int. J. Math., Volume 11 (2000) no. 4, pp. 579-588 | DOI | Zbl
Cited by Sources:
Comments - Policy