In this note, we confirm an old conjecture of Erdős.
Révisé le :
Accepté le :
Publié le :
Yong-Gao Chen 1 ; Yuchen Ding 2
@article{CRMATH_2022__360_G9_971_0, author = {Yong-Gao Chen and Yuchen Ding}, title = {On a conjecture of {Erd\H{o}s}}, journal = {Comptes Rendus. Math\'ematique}, pages = {971--974}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.345}, language = {en}, }
Yong-Gao Chen; Yuchen Ding. On a conjecture of Erdős. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 971-974. doi : 10.5802/crmath.345. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.345/
[1] Romanoff theorem in a sparse set, Sci. China, Math., Volume 53 (2010) no. 9, pp. 2195-2202 | DOI | MR | Zbl
[2] On Romanoff’s constant, J. Number Theory, Volume 106 (2004) no. 2, pp. 275-284 | DOI | MR | Zbl
[3] Extending an Erdős result on a Romanov type problem, Arch. Math., Volume 118 (2022), pp. 587-592 | DOI | MR | Zbl
[4] Some application of the admissible sets (preprint)
[5] On integers of the form and some related problems, Summa Brasil. Math., Volume 2 (1950), pp. 113-123 | MR | Zbl
[6] Primes in intervals of bounded length, Bull. Am. Math. Soc., Volume 52 (2015) no. 2, pp. 171-222 | DOI | MR | Zbl
[7] Small gaps between primes, Ann. Math., Volume 181 (2015) no. 1, pp. 383-413 | DOI | MR | Zbl
[8] Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci., Volume 1 (2014), 12 | MR | Zbl
[9] Über einige Sätze der additiven Zahlentheorie, Math. Ann., Volume 109 (1934), pp. 668-678 | DOI | Zbl
Cité par Sources :
Commentaires - Politique