Comptes Rendus
Théorie des nombres
On a conjecture of Erdős
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 971-974.

In this note, we confirm an old conjecture of Erdős.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.345
Classification : 11A41, 11A67

Yong-Gao Chen 1 ; Yuchen Ding 2

1 School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, People’s Republic of China
2 School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, People’s Republic of China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G9_971_0,
     author = {Yong-Gao Chen and Yuchen Ding},
     title = {On a conjecture of {Erd\H{o}s}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {971--974},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.345},
     language = {en},
}
TY  - JOUR
AU  - Yong-Gao Chen
AU  - Yuchen Ding
TI  - On a conjecture of Erdős
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 971
EP  - 974
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.345
LA  - en
ID  - CRMATH_2022__360_G9_971_0
ER  - 
%0 Journal Article
%A Yong-Gao Chen
%A Yuchen Ding
%T On a conjecture of Erdős
%J Comptes Rendus. Mathématique
%D 2022
%P 971-974
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.345
%G en
%F CRMATH_2022__360_G9_971_0
Yong-Gao Chen; Yuchen Ding. On a conjecture of Erdős. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 971-974. doi : 10.5802/crmath.345. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.345/

[1] Yong-Gao Chen Romanoff theorem in a sparse set, Sci. China, Math., Volume 53 (2010) no. 9, pp. 2195-2202 | DOI | MR | Zbl

[2] Yong-Gao Chen; Xue-Gong Sun On Romanoff’s constant, J. Number Theory, Volume 106 (2004) no. 2, pp. 275-284 | DOI | MR | Zbl

[3] Yuchen Ding Extending an Erdős result on a Romanov type problem, Arch. Math., Volume 118 (2022), pp. 587-592 | DOI | MR | Zbl

[4] Yuchen Ding; G.-L. Zhou Some application of the admissible sets (preprint)

[5] Pál Erdős On integers of the form 2 k +p and some related problems, Summa Brasil. Math., Volume 2 (1950), pp. 113-123 | MR | Zbl

[6] Andrew Granville Primes in intervals of bounded length, Bull. Am. Math. Soc., Volume 52 (2015) no. 2, pp. 171-222 | DOI | MR | Zbl

[7] James Maynard Small gaps between primes, Ann. Math., Volume 181 (2015) no. 1, pp. 383-413 | DOI | MR | Zbl

[8] D. H. J. Polymath Variants of the Selberg sieve, and bounded intervals containing many primes, Res. Math. Sci., Volume 1 (2014), 12 | MR | Zbl

[9] Nikolaĭ P. Romanoff Über einige Sätze der additiven Zahlentheorie, Math. Ann., Volume 109 (1934), pp. 668-678 | DOI | Zbl

Cité par Sources :

Commentaires - Politique