We prove an existence and uniqueness result for solutions to a weighted pendulum equation in where the weight is non-smooth and coercive. We also establish (in)stability results for according to the monotonicity of the weight. These results are applied in a reduced model for thin ferromagnetic nanowires with notches to obtain existence, uniqueness and stability of domain walls connecting two opposite directions of the magnetization.
Révisé le :
Accepté le :
Publié le :
Radu Ignat 1
@article{CRMATH_2022__360_G7_819_0, author = {Radu Ignat}, title = {Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires}, journal = {Comptes Rendus. Math\'ematique}, pages = {819--828}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.349}, language = {en}, }
TY - JOUR AU - Radu Ignat TI - Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires JO - Comptes Rendus. Mathématique PY - 2022 SP - 819 EP - 828 VL - 360 PB - Académie des sciences, Paris DO - 10.5802/crmath.349 LA - en ID - CRMATH_2022__360_G7_819_0 ER -
Radu Ignat. Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 819-828. doi : 10.5802/crmath.349. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.349/
[1] Stability for static walls in ferromagnetic nanowires, Discrete Contin. Dyn. Syst., Volume 6 (2006) no. 2, pp. 273-290 | MR | Zbl
[2] Stabilization of walls in notched ferromagnetic nanowires (2018) (https://hal.archives-ouvertes.fr/hal-01810144)
[3] Asymptotic stability of precessing domain walls for the Landau–Lifshitz–Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction (2022) (https://arxiv.org/abs/2202.01005)
[4] A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types, J. Eur. Math. Soc., Volume 16 (2014) no. 7, pp. 1377-1422 | DOI | MR | Zbl
[5] Interaction energy of domain walls in a nonlocal Ginzburg–Landau type model from micromagnetics, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 1, pp. 419-485 | DOI | MR | Zbl
[6] Local minimality of -valued and -valued Ginzburg–Landau vortex solutions in the unit ball (2021) (https://arxiv.org/abs/2111.07669)
[7] Stability of the melting hedgehog in the Landau–de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 633-673 | DOI | MR | Zbl
[8] On the uniqueness of minimisers of Ginzburg–Landau functionals, Ann. Sci. Éc. Norm. Supér., Volume 53 (2020) no. 3, pp. 589-613 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique