Given an orthogonal compact matrix quantum group defined by intertwiner relations, we characterize by relations its projective version. As a sample application, we prove that .
Revised:
Accepted:
Published online:
Daniel Gromada 1
@article{CRMATH_2022__360_G8_899_0, author = {Daniel Gromada}, title = {Presentations of projective quantum groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {899--907}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.353}, language = {en}, }
Daniel Gromada. Presentations of projective quantum groups. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 899-907. doi : 10.5802/crmath.353. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.353/
[1] Théorie des représentations du groupe quantique compact libre , C. R. Math. Acad. Sci. Paris, Volume 322 (1996), pp. 241-244
[2] Le Groupe Quantique Compact Libre , Commun. Math. Phys., Volume 190 (1997) no. 1, pp. 143-172 | DOI
[3] Symmetries of a generic coaction, Math. Ann., Volume 314 (1999), pp. 763-780
[4] Categorical Formulation of Finite-Dimensional Quantum Algebras, Commun. Math. Phys., Volume 226 (2002), pp. 221-232 | DOI
[5] The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Volume 22 (2007), pp. 345-384
[6] Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier, Volume 60 (2010) no. 1, pp. 169-216 | DOI
[7] Compact matrix quantum groups and their representation categories, Ph. D. Thesis, Saarland University (2020) | DOI
[8] Quantum symmetries of Cayley graphs of abelian groups (2021) | arXiv
[9] Gluing Compact Matrix Quantum Groups, Algebr. Represent. Theory, Volume 25 (2022), pp. 53-88 | DOI
[10] Generating linear categories of partitions (2019–21) (to appear in Kyoto J. Math.) | arXiv
[11] New products and -extensions of compact matrix quantum groups, Ann. Inst. Fourier, Volume 72 (2022) no. 1, pp. 387-434
[12] Temperley–Lieb and non-crossing partition planar algebras, Noncommutative Rings, Group Rings, Diagram Algebras and Their Applications (Contemporary Mathematics), Volume 456, American Mathematical Society, 2008, pp. 61-72
[13] Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | DOI
[14] Quantum Symmetry Groups of Finite Spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI
[15] Introduction to compact (matrix) quantum groups and Banica–Speicher (easy) quantum groups, Proc. Indian Acad. Sci., Math. Sci., Volume 127 (2017) no. 5, pp. 881-933 | DOI | Zbl
[16] Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987) no. 4, pp. 613-665 | DOI
[17] Tannaka–Krein duality for compact matrix pseudogroups. Twisted groups, Invent. Math., Volume 93 (1988) no. 1, pp. 35-76 | DOI
Cited by Sources:
Comments - Policy