[Sur le mouvement d’un corps rigide dans un écoulement bidimensionel d’un fluide visqueux incompressible avec conditions au bord de Navier et énergie infinie]
In this paper we consider the motion of a rigid body in a viscous incompressible fluid when some Navier slip conditions are prescribed on the body’s boundary. The whole “viscous incompressible fluid + rigid body” system is assumed to occupy the full plane
Dans cet article, nous considérons le mouvement d’un corps rigide dans un fluide visqueux incompressible avec des conditions de glissement avec friction de Navier à l’interface. Le système “fluide+corps rigide” est supposé occuper le plan tout entier. Nous prouvons l’existence de solutions globales en temps avec une circulation constante non nulle à l’infini.
Révisé le :
Accepté le :
Publié le :
Marco Bravin 1

@article{CRMATH_2020__358_3_303_0, author = {Marco Bravin}, title = {On the {2D} {\textquotedblleft}viscous incompressible fluid + rigid body{\textquotedblright} system with {Navier} conditions and unbounded energy}, journal = {Comptes Rendus. Math\'ematique}, pages = {303--319}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.36}, language = {en}, }
TY - JOUR AU - Marco Bravin TI - On the 2D “viscous incompressible fluid + rigid body” system with Navier conditions and unbounded energy JO - Comptes Rendus. Mathématique PY - 2020 SP - 303 EP - 319 VL - 358 IS - 3 PB - Académie des sciences, Paris DO - 10.5802/crmath.36 LA - en ID - CRMATH_2020__358_3_303_0 ER -
Marco Bravin. On the 2D “viscous incompressible fluid + rigid body” system with Navier conditions and unbounded energy. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 303-319. doi : 10.5802/crmath.36. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.36/
[1] Stokes and Navier-–Stokes equations with Navier boundary condition, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 2, pp. 115-119 | DOI | MR | Zbl
[2] Energy equality and uniqueness of weak solutions of a “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions in a 2D bounded domain, J. Math. Fluid Mech., Volume 21 (2019) no. 2, 23, 31 pages | MR | Zbl
[3] Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2002
[4] An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems, Springer, 2011 | Zbl
[5] Uniqueness for the two-dimensional Navier-–Stokes equation with a measure as initial vorticity, Math. Ann., Volume 332 (2005) no. 2, pp. 287-327 | DOI | MR | Zbl
[6] Existence of weak solutions up to collision for viscous fluid-solid systems with slip, Commun. Pure Appl. Math., Volume 67 (2014) no. 12, pp. 2022-2076 | DOI | MR | Zbl
[7] The two-dimensional Euler equations on singular domains, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 1, pp. 131-170 | DOI | MR | Zbl
[8] Two-dimensional Navier–Stokes flow with measures as initial vorticity, Arch. Ration. Mech. Anal., Volume 104 (1988) no. 3, pp. 223-250 | DOI | MR | Zbl
[9] Finite element methods for Navier–Stokes equations: theory and algorithms, Springer Series in Computational Mathematics, 5, Springer, 2012 | Zbl
[10] On the motion of a small disk immersed in a two dimensional incompressible perfect fluid, Bull. Soc. Math. Fr., Volume 142 (2014) no. 3, pp. 489-536 | DOI | Zbl
[11] Dynamics of several rigid bodies in a two-dimensional ideal fluid and convergence to vortex systems (2019) (https://arxiv.org/abs/1910.03158)
[12] Two dimensional incompressible ideal flow around a small obstacle, Commun. Partial Differ. Equations, Volume 28 (2003) no. 1-2, pp. 349-379 | DOI | MR | Zbl
[13] Two-dimensional incompressible viscous flow around a small obstacle, Math. Ann., Volume 336 (2006) no. 2, pp. 449-489 | DOI | MR | Zbl
[14] Exterior problem for the two-dimensional Euler equation, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 30 (1983) no. 1, pp. 63-92 | MR | Zbl
[15] Local and global unique solvability of the Navier–Stokes exterior problem with Cauchy data in the space
[16] Small moving rigid body into a viscous incompressible fluid, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 3, pp. 1307-1335 | DOI | MR | Zbl
[17] Recent developments in the Navier–Stokes problem, CRC Research Notes in Mathematics, 431, CRC Press, 2002 | MR | Zbl
[18] Local energy weak solutions for the Navier–Stokes equations in the half-space (2017) (https://arxiv.org/abs/1711.04486) | Zbl
[19] On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007) no. 1, pp. 139-165 | DOI | Numdam | MR | Zbl
[20] On the “viscous incompressible fluid + rigid body” system with Navier conditions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 1, pp. 55-80 | DOI | Numdam | MR | Zbl
Cité par Sources :
Commentaires - Politique