We construct examples to show that having nef cotangent bundle is not preserved under finite ramified covers. Our examples also show that a projective manifold with Stein universal cover may not have nef cotangent bundle, disproving a conjecture of Liu–Maxim–Wang [7].
Révisé le :
Accepté le :
Publié le :
Yiyu Wang 1
@article{CRMATH_2022__360_G8_929_0, author = {Yiyu Wang}, title = {Ramified cover of varieties with nef cotangent bundle}, journal = {Comptes Rendus. Math\'ematique}, pages = {929--932}, publisher = {Acad\'emie des sciences, Paris}, volume = {360}, year = {2022}, doi = {10.5802/crmath.365}, language = {en}, }
Yiyu Wang. Ramified cover of varieties with nef cotangent bundle. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 929-932. doi : 10.5802/crmath.365. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.365/
[1] Perverse sheaves on varieties with large fundamental groups (2021) | arXiv
[2] Applications of Theorems A and B (2004), pp. 125-185
[3] Shafarevich maps and plurigenera of algebraic varieties, Invent. Math., Volume 113 (1993) no. 1, pp. 177-215 | Zbl
[4] Compact complex manifolds with numerically effective cotangent bundles, Doc. Math., Volume 2 (1997), pp. 183-193
[5] Positivity in Algebraic Geometry I: Classical Setting: Line Bundles and Linear Series, Springer, 2004
[6] Positivity in Algebraic Geometry II: Positivity for Vector Bundles, and Multiplier Ideals, Springer, 2004
[7] Aspherical manifolds, Mellin transformation and a question of Bobadilla–Kollár, J. Reine Angew. Math., Volume 781 (2021), pp. 1-18
[8] Hyperbolic hypersurfaces in of Fermat–Waring type, Proc. Am. Math. Soc., Volume 130 (2002) no. 7, pp. 2031-2035
[9] On the density of ratios of Chern numbers of algebraic surfaces, Math. Ann., Volume 268 (1984) no. 2, pp. 207-221
[10] Überlagerungen holomorph-vollständiger komplexer Räume, Arch. Math., Volume 7 (1956) no. 5, pp. 354-361
Cité par Sources :
Commentaires - Politique