Comptes Rendus
Algorithmic and computer tools
On the Christoffel function and classification in data analysis
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 919-928.

We show that the empirical Christoffel function associated with a cloud of finitely many points sampled from a distribution, can provide a simple tool for supervised classification in data analysis, with good generalization properties.

Nous montrons que la fonction de Christoffel empirique associée à un échantillon fini de points peut fournir un outil simple pour la classification supervisée en analyse de données, avec de bonnes propriétés de généralisation.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.358
Classification: 41A30, 42C05, 47B32, 68T09, 94A16
Jean B. Lasserre 1

1 LAAS-CNRS and Institute of Mathematics, BP 54200, 7 Avenue du Colonel Roche, 31031 Toulouse cédex 4, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G8_919_0,
     author = {Jean B. Lasserre},
     title = {On the {Christoffel} function and classification in data analysis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {919--928},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.358},
     language = {en},
}
TY  - JOUR
AU  - Jean B. Lasserre
TI  - On the Christoffel function and classification in data analysis
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 919
EP  - 928
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.358
LA  - en
ID  - CRMATH_2022__360_G8_919_0
ER  - 
%0 Journal Article
%A Jean B. Lasserre
%T On the Christoffel function and classification in data analysis
%J Comptes Rendus. Mathématique
%D 2022
%P 919-928
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.358
%G en
%F CRMATH_2022__360_G8_919_0
Jean B. Lasserre. On the Christoffel function and classification in data analysis. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 919-928. doi : 10.5802/crmath.358. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.358/

[1] Steven L. Brunton; J. Nathan Kutz Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2019

[2] Jean Bernard Lasserre; Edouard Pauwels Sorting out typicality via the inverse moment matrix SOS polynomial, Advances in Neural Information Processing Systems (2016), pp. 190-198

[3] Jean Bernard Lasserre; Edouard Pauwels The empirical Christoffel function with applications in data analysis, Adv. Comput. Math., Volume 45 (2019) no. 3, pp. 1439-1468

[4] Jean Bernard Lasserre; Edouard Pauwels; Mihai Putinar The Christoffel–Darboux Kernel for Data Analysis, Cambridge Monographs on Applied and Computational Mathematics, 38, Cambridge University Press, 2022 | Zbl

[5] Swann Marx; Edouard Pauwels; Tillmann Weisser; Didier Henrion; Jean Bernard Lasserre Semi-algebraic approximation using Christoffel–Darboux kernel, Constr. Approx., Volume 54 (2021) no. 3, pp. 391-429

Cited by Sources:

Comments - Policy


Articles of potential interest

A disintegration of the Christoffel function

Jean B. Lasserre

C. R. Math (2022)


Pell’s equation, sum-of-squares and equilibrium measures on a compact set

Jean B. Lasserre

C. R. Math (2023)