We consider operators acting on a UMD Banach lattice that have the same algebraic structure as the position and momentum operators associated with the harmonic oscillator acting on . More precisely, we consider abstract harmonic oscillators of the form for tuples of operators and , where and are assumed to generate groups and to satisfy the canonical commutator relations. We prove functional calculus results for these abstract harmonic oscillators that match classical Hörmander spectral multiplier estimates for the harmonic oscillator on . This covers situations where the underlying metric measure space is not doubling and the use of function spaces that are not particularly well suited to extrapolation arguments. For instance, as an application we treat the harmonic oscillator on mixed norm Bargmann–Fock spaces. Our approach is based on a transference principle for the Schrödinger representation of the Heisenberg group that allows us to reduce the problem to the study of the twisted Laplacian on the Bochner spaces . This can be seen as a generalisation of the Stone–von Neumann theorem to UMD lattices that are not Hilbert spaces.
Accepted:
Published online:
Mots-clés : spectral multipliers, harmonic oscillator, twisted convolutions, canonical commutation relations, Weyl pseudo-differential calculus, UMD spaces, transference, $H^\infty $-calculus, Hörmander calculus
Jan van Neerven 1; Pierre Portal 2; Himani Sharma 3
@article{CRMATH_2023__361_G5_835_0, author = {Jan van Neerven and Pierre Portal and Himani Sharma}, title = {Spectral multiplier theorems for abstract harmonic oscillators on {UMD} lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {835--846}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.370}, language = {en}, }
TY - JOUR AU - Jan van Neerven AU - Pierre Portal AU - Himani Sharma TI - Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices JO - Comptes Rendus. Mathématique PY - 2023 SP - 835 EP - 846 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.370 LA - en ID - CRMATH_2023__361_G5_835_0 ER -
%0 Journal Article %A Jan van Neerven %A Pierre Portal %A Himani Sharma %T Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices %J Comptes Rendus. Mathématique %D 2023 %P 835-846 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.370 %G en %F CRMATH_2023__361_G5_835_0
Jan van Neerven; Pierre Portal; Himani Sharma. Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 835-846. doi : 10.5802/crmath.370. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.370/
[1] Rescaled extrapolation for vector-valued functions, Publ. Mat., Barc., Volume 63 (2019) no. 1, pp. 155-182 | DOI | Zbl
[2] Hermite multipliers on modulation spaces, Analysis and partial differential equations: Perspectives from developing countries (Springer Proceedings in Mathematics & Statistics), Volume 275, Springer, 2019, pp. 42-64 | Zbl
[3] Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness, Adv. Math., Volume 392 (2021), 107995, 18 pages | Zbl
[4] Transference methods in analysis, Regional Conference Series in Mathematics, 31, American Mathematical Society, 1976
[5] Hörmander functional calculus on UMD lattice valued spaces under generalised Gaussian estimates, J. Anal. Math., Volume 145 (2021) no. 1, pp. 177-234 | DOI | Zbl
[6] Maximal Hörmander Functional Calculus on spaces and UMD lattices (2022) (https://arxiv.org/abs/2203.03263)
[7] Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers, J. Funct. Anal., Volume 260 (2011) no. 4, pp. 1106-1131 | DOI | Zbl
[8] Consistent operator semigroups and their interpolation, J. Oper. Theory, Volume 82 (2019) no. 1, pp. 3-21 | DOI | Zbl
[9] Higher transcendental functions. Vol. I & II, Bateman Manuscript Project, McGraw-Hill, 1953
[10] Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, Wavelets: A tutorial in theory and applications (Wavelet Analysis and Its Applications), Volume 2, Academic Press Inc., 1992, pp. 359-398 | DOI | Zbl
[11] Martingale and integral transforms of Banach space valued functions, Probability and Banach spaces (Zaragoza, 1985) (Lecture Notes in Mathematics), Volume 1221, Springer, 1985, pp. 195-222 | DOI | Zbl
[12] Functional calculus for the Ornstein–Uhlenbeck operator, J. Funct. Anal., Volume 183 (2001) no. 2, pp. 413-450 | DOI | Zbl
[13] Some Bargmann spaces of analytic functions, Function spaces. The second conference (Edwardsville, IL, 1994) (Lecture Notes in Pure and Applied Mathematics), Volume 172, Marcel Dekker, 1995, pp. 123-138 | Zbl
[14] Transference principles for semigroups and a theorem of Peller, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 2959-2998 | DOI | Zbl
[15] Quantum theory for mathematicians, Graduate Texts in Mathematics, 136, Springer, 2013 | DOI
[16] Optimal angle of the holomorphic functional calculus for the Ornstein–Uhlenbeck operator, Indag. Math., New Ser., Volume 30 (2019) no. 5, pp. 854-861 | DOI | Zbl
[17] The vector-valued nonhomogeneous theorem, Int. Math. Res. Not., Volume 2014 (2014) no. 2, pp. 451-511 | DOI | Zbl
[18] Analysis in Banach spaces, Volume I: Martingales and Littlewood–Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, 2016 | DOI
[19] Analysis in Banach spaces, Volume II: Probabilistic methods and operator theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 67, Springer, 2017 | DOI
[20] Algebraic Calderón–Zygmund theory, Adv. Math., Volume 376 (2021), 107443, 73 pages | Zbl
[21] Spectral multiplier theorems via -calculus and -bounds, Math. Z., Volume 289 (2018) no. 1-2, pp. 405-444 | DOI | Zbl
[22] Maximal -regularity for parabolic equations, Fourier multiplier theorems and -functional calculus, Functional analytic methods for evolution equations (Lecture Notes in Mathematics), Volume 1855, Springer, 2004, pp. 65-311 | DOI | Zbl
[23] Banach lattices, Universitext, Springer, 1991 | DOI
[24] The Weyl calculus with respect to the Gaussian measure and restricted - boundedness of the Ornstein–Uhlenbeck semigroup in complex time, Bull. Soc. Math. Fr., Volume 146 (2018) no. 4, pp. 691-712 | DOI | Zbl
[25] The Weyl calculus for group generators satisfying the canonical commutation relations, J. Oper. Theory, Volume 83 (2020) no. 2, pp. 253-298 | DOI | Zbl
[26] The Weyl transform and Laguerre polynomials, Matematiche, Volume 27 (1972), pp. 301-323 | Zbl
[27] Harmonic analysis on nilpotent groups and singular integrals. I: Oscillatory integrals, J. Funct. Anal., Volume 73 (1987), pp. 179-194 | DOI | Zbl
[28] Multipliers for Hermite expansions, Rev. Mat. Iberoam., Volume 3 (1987) no. 1, pp. 1-24 | DOI | Zbl
[29] Lectures on Hermite and Laguerre expansions, Mathematical Notes (Princeton), 42, Princeton University Press, 1993 | DOI
Cited by Sources:
Comments - Policy