We consider operators acting on a UMD Banach lattice
Accepté le :
Publié le :
Mots-clés : spectral multipliers, harmonic oscillator, twisted convolutions, canonical commutation relations, Weyl pseudo-differential calculus, UMD spaces, transference,
Jan van Neerven 1 ; Pierre Portal 2 ; Himani Sharma 3

@article{CRMATH_2023__361_G5_835_0, author = {Jan van Neerven and Pierre Portal and Himani Sharma}, title = {Spectral multiplier theorems for abstract harmonic oscillators on {UMD} lattices}, journal = {Comptes Rendus. Math\'ematique}, pages = {835--846}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.370}, language = {en}, }
TY - JOUR AU - Jan van Neerven AU - Pierre Portal AU - Himani Sharma TI - Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices JO - Comptes Rendus. Mathématique PY - 2023 SP - 835 EP - 846 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.370 LA - en ID - CRMATH_2023__361_G5_835_0 ER -
%0 Journal Article %A Jan van Neerven %A Pierre Portal %A Himani Sharma %T Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices %J Comptes Rendus. Mathématique %D 2023 %P 835-846 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.370 %G en %F CRMATH_2023__361_G5_835_0
Jan van Neerven; Pierre Portal; Himani Sharma. Spectral multiplier theorems for abstract harmonic oscillators on UMD lattices. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 835-846. doi : 10.5802/crmath.370. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.370/
[1] Rescaled extrapolation for vector-valued functions, Publ. Mat., Barc., Volume 63 (2019) no. 1, pp. 155-182 | DOI | Zbl
[2] Hermite multipliers on modulation spaces, Analysis and partial differential equations: Perspectives from developing countries (Springer Proceedings in Mathematics & Statistics), Volume 275, Springer, 2019, pp. 42-64 | Zbl
[3] Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness, Adv. Math., Volume 392 (2021), 107995, 18 pages | Zbl
[4] Transference methods in analysis, Regional Conference Series in Mathematics, 31, American Mathematical Society, 1976
[5] Hörmander functional calculus on UMD lattice valued
[6] Maximal Hörmander Functional Calculus on
[7] Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers, J. Funct. Anal., Volume 260 (2011) no. 4, pp. 1106-1131 | DOI | Zbl
[8] Consistent operator semigroups and their interpolation, J. Oper. Theory, Volume 82 (2019) no. 1, pp. 3-21 | DOI | Zbl
[9] Higher transcendental functions. Vol. I & II, Bateman Manuscript Project, McGraw-Hill, 1953
[10] Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, Wavelets: A tutorial in theory and applications (Wavelet Analysis and Its Applications), Volume 2, Academic Press Inc., 1992, pp. 359-398 | DOI | Zbl
[11] Martingale and integral transforms of Banach space valued functions, Probability and Banach spaces (Zaragoza, 1985) (Lecture Notes in Mathematics), Volume 1221, Springer, 1985, pp. 195-222 | DOI | Zbl
[12] Functional calculus for the Ornstein–Uhlenbeck operator, J. Funct. Anal., Volume 183 (2001) no. 2, pp. 413-450 | DOI | Zbl
[13] Some Bargmann spaces of analytic functions, Function spaces. The second conference (Edwardsville, IL, 1994) (Lecture Notes in Pure and Applied Mathematics), Volume 172, Marcel Dekker, 1995, pp. 123-138 | Zbl
[14] Transference principles for semigroups and a theorem of Peller, J. Funct. Anal., Volume 261 (2011) no. 10, pp. 2959-2998 | DOI | Zbl
[15] Quantum theory for mathematicians, Graduate Texts in Mathematics, 136, Springer, 2013 | DOI
[16] Optimal angle of the holomorphic functional calculus for the Ornstein–Uhlenbeck operator, Indag. Math., New Ser., Volume 30 (2019) no. 5, pp. 854-861 | DOI | Zbl
[17] The vector-valued nonhomogeneous
[18] Analysis in Banach spaces, Volume I: Martingales and Littlewood–Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, 2016 | DOI
[19] Analysis in Banach spaces, Volume II: Probabilistic methods and operator theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 67, Springer, 2017 | DOI
[20] Algebraic Calderón–Zygmund theory, Adv. Math., Volume 376 (2021), 107443, 73 pages | Zbl
[21] Spectral multiplier theorems via
[22] Maximal
[23] Banach lattices, Universitext, Springer, 1991 | DOI
[24] The Weyl calculus with respect to the Gaussian measure and restricted
[25] The Weyl calculus for group generators satisfying the canonical commutation relations, J. Oper. Theory, Volume 83 (2020) no. 2, pp. 253-298 | DOI | Zbl
[26] The Weyl transform and Laguerre polynomials, Matematiche, Volume 27 (1972), pp. 301-323 | Zbl
[27] Harmonic analysis on nilpotent groups and singular integrals. I: Oscillatory integrals, J. Funct. Anal., Volume 73 (1987), pp. 179-194 | DOI | Zbl
[28] Multipliers for Hermite expansions, Rev. Mat. Iberoam., Volume 3 (1987) no. 1, pp. 1-24 | DOI | Zbl
[29] Lectures on Hermite and Laguerre expansions, Mathematical Notes (Princeton), 42, Princeton University Press, 1993 | DOI
- Phase space analysis of spectral multipliers for the twisted Laplacian, Transactions of the American Mathematical Society (2024) | DOI:10.1090/tran/9224
Cité par 1 document. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier