Comptes Rendus
Article de recherche - Analyse harmonique
On Sharpness of L log L Criterion for Weak Type (1,1) boundedness of rough operators
[Sur la netteté du critère L log L pour les faibles de type (1,1) continuité des opérateurs rugueux]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1205-1213.

Dans cette note, nous montrons que l’hypothèse ΩLlogL est la condition de taille la plus forte sur une fonction Ω sur la sphère unitaire de valeur moyenne zéro, qui assure que l’intégrale singulière correspondante T Ω définie par

T Ω f(x)=p.v.1 |x-y| d Ωx-y |x-y|f(y)dy,

est borné de L 1 ( d ) dans L 1 ( d ) faibles, à condition que T Ω soit bornée dans L 2 ( d ).

In this note, we show that the ΩLlogL hypothesis is the strongest size condition on a function Ω on the unit sphere with mean value zero, which ensures that the corresponding singular integral T Ω defined by

T Ω f(x)=p.v.1 |x-y| d Ωx-y |x-y|f(y)dy,

maps L 1 ( d ) to weak L 1 ( d ), provided T Ω is bounded in L 2 ( d ).

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.633
Classification : 42B20
Keywords: Singular Integrals, Orlicz spaces
Mot clés : Intégrales singulières, espaces d’Orlicz

Ankit Bhojak 1

1 Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal-462066, India.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1205_0,
     author = {Ankit Bhojak},
     title = {On {Sharpness} of $L$ log $L$ {Criterion} for {Weak} {Type} $(1,1)$ boundedness of rough operators},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1205--1213},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.633},
     language = {en},
}
TY  - JOUR
AU  - Ankit Bhojak
TI  - On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1205
EP  - 1213
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.633
LA  - en
ID  - CRMATH_2024__362_G10_1205_0
ER  - 
%0 Journal Article
%A Ankit Bhojak
%T On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators
%J Comptes Rendus. Mathématique
%D 2024
%P 1205-1213
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.633
%G en
%F CRMATH_2024__362_G10_1205_0
Ankit Bhojak. On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1205-1213. doi : 10.5802/crmath.633. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.633/

[1] Colin Bennett; Robert Sharpley Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press Inc., 1988, xiv+469 pages | MR | Zbl

[2] Antoni Calderón On singular integrals, Am. J. Math., Volume 78 (1956), pp. 289-309 | DOI | MR | Zbl

[3] William C. Connett Singular integrals near L 1 , Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1 (Proc. Sympos. Pure Math.), Volume XXXV, American Mathematical Society, 1979, pp. 163-165 | MR | Zbl

[4] Michael Christ; José Luis Rubio de Francia Weak type (1,1) bounds for rough operators. II, Invent. Math., Volume 93 (1988) no. 1, pp. 225-237 | DOI | MR | Zbl

[5] Ronald R. Coifman; Guido Weiss Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., Volume 83 (1977) no. 4, pp. 569-645 | DOI | MR | Zbl

[6] Loukas Grafakos; Petr Honzík; Dmitri Ryabogin On the p-independence boundedness property of Calderón-Zygmund theory, J. Reine Angew. Math., Volume 602 (2007), pp. 227-234 | DOI | MR | Zbl

[7] Loukas Grafakos Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2014, xviii+638 pages | DOI | MR | Zbl

[8] Loukas Grafakos; Atanas Stefanov L p bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J., Volume 47 (1998) no. 2, pp. 455-469 | DOI | MR | Zbl

[9] Loukas Grafakos; Atanas Stefanov Convolution Calderón–Zygmund singular integral operators with rough kernels, Analysis of divergence (Orono, ME, 1997) (Applied and Numerical Harmonic Analysis), Birkhäuser, 1999, pp. 119-143 | DOI | MR | Zbl

[10] Steve Hofmann Weak (1,1) boundedness of singular integrals with nonsmooth kernel, Proc. Am. Math. Soc., Volume 103 (1988) no. 1, pp. 260-264 | DOI | MR | Zbl

[11] Petr Honzík On p dependent boundedness of singular integral operators, Math. Z., Volume 267 (2011) no. 3-4, pp. 931-937 | DOI | MR | Zbl

[12] Boris Rubin; Dmitri Ryabogin Singular integral operators generated by wavelet transforms, Integral Equations Oper. Theory, Volume 35 (1999) no. 1, pp. 105-117 | DOI | MR | Zbl

[13] Walter Rudin Some theorems on Fourier coefficients, Proc. Am. Math. Soc., Volume 10 (1959), pp. 855-859 | DOI | MR | Zbl

[14] Fulvio Ricci; Guido Weiss A characterization of H 1 (Σ n-1 ), Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1 (Proc. Sympos. Pure Math.), Volume XXXV, American Mathematical Society, 1979, pp. 289-294 | MR | Zbl

[15] Andreas Seeger Singular integral operators with rough convolution kernels, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 95-105 | DOI | MR | Zbl

[16] Atanas Stefanov Weak type estimates for certain Calderón-Zygmund singular integral operators, Stud. Math., Volume 147 (2001) no. 1, pp. 1-13 | DOI | MR | Zbl

[17] Mary Weiss; A. Zygmund An example in the theory of singular integrals, Stud. Math., Volume 26 (1965), pp. 101-111 | DOI | MR | Zbl

[18] Karel de Leeuw On L p multipliers, Ann. Math., Volume 81 (1965), pp. 364-379 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique