[Sur la netteté du critère log pour les faibles de type continuité des opérateurs rugueux]
Dans cette note, nous montrons que l’hypothèse est la condition de taille la plus forte sur une fonction sur la sphère unitaire de valeur moyenne zéro, qui assure que l’intégrale singulière correspondante définie par
est borné de dans faibles, à condition que soit bornée dans .
In this note, we show that the hypothesis is the strongest size condition on a function on the unit sphere with mean value zero, which ensures that the corresponding singular integral defined by
maps to weak , provided is bounded in .
Révisé le :
Accepté le :
Publié le :
Keywords: Singular Integrals, Orlicz spaces
Mot clés : Intégrales singulières, espaces d’Orlicz
Ankit Bhojak 1
@article{CRMATH_2024__362_G10_1205_0, author = {Ankit Bhojak}, title = {On {Sharpness} of $L$ log $L$ {Criterion} for {Weak} {Type} $(1,1)$ boundedness of rough operators}, journal = {Comptes Rendus. Math\'ematique}, pages = {1205--1213}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.633}, language = {en}, }
TY - JOUR AU - Ankit Bhojak TI - On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators JO - Comptes Rendus. Mathématique PY - 2024 SP - 1205 EP - 1213 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.633 LA - en ID - CRMATH_2024__362_G10_1205_0 ER -
Ankit Bhojak. On Sharpness of $L$ log $L$ Criterion for Weak Type $(1,1)$ boundedness of rough operators. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1205-1213. doi : 10.5802/crmath.633. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.633/
[1] Interpolation of operators, Pure and Applied Mathematics, 129, Academic Press Inc., 1988, xiv+469 pages | MR | Zbl
[2] On singular integrals, Am. J. Math., Volume 78 (1956), pp. 289-309 | DOI | MR | Zbl
[3] Singular integrals near , Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1 (Proc. Sympos. Pure Math.), Volume XXXV, American Mathematical Society, 1979, pp. 163-165 | MR | Zbl
[4] Weak type bounds for rough operators. II, Invent. Math., Volume 93 (1988) no. 1, pp. 225-237 | DOI | MR | Zbl
[5] Extensions of Hardy spaces and their use in analysis, Bull. Am. Math. Soc., Volume 83 (1977) no. 4, pp. 569-645 | DOI | MR | Zbl
[6] On the -independence boundedness property of Calderón-Zygmund theory, J. Reine Angew. Math., Volume 602 (2007), pp. 227-234 | DOI | MR | Zbl
[7] Classical Fourier analysis, Graduate Texts in Mathematics, 249, Springer, 2014, xviii+638 pages | DOI | MR | Zbl
[8] bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J., Volume 47 (1998) no. 2, pp. 455-469 | DOI | MR | Zbl
[9] Convolution Calderón–Zygmund singular integral operators with rough kernels, Analysis of divergence (Orono, ME, 1997) (Applied and Numerical Harmonic Analysis), Birkhäuser, 1999, pp. 119-143 | DOI | MR | Zbl
[10] Weak boundedness of singular integrals with nonsmooth kernel, Proc. Am. Math. Soc., Volume 103 (1988) no. 1, pp. 260-264 | DOI | MR | Zbl
[11] On dependent boundedness of singular integral operators, Math. Z., Volume 267 (2011) no. 3-4, pp. 931-937 | DOI | MR | Zbl
[12] Singular integral operators generated by wavelet transforms, Integral Equations Oper. Theory, Volume 35 (1999) no. 1, pp. 105-117 | DOI | MR | Zbl
[13] Some theorems on Fourier coefficients, Proc. Am. Math. Soc., Volume 10 (1959), pp. 855-859 | DOI | MR | Zbl
[14] A characterization of , Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1 (Proc. Sympos. Pure Math.), Volume XXXV, American Mathematical Society, 1979, pp. 289-294 | MR | Zbl
[15] Singular integral operators with rough convolution kernels, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 95-105 | DOI | MR | Zbl
[16] Weak type estimates for certain Calderón-Zygmund singular integral operators, Stud. Math., Volume 147 (2001) no. 1, pp. 1-13 | DOI | MR | Zbl
[17] An example in the theory of singular integrals, Stud. Math., Volume 26 (1965), pp. 101-111 | DOI | MR | Zbl
[18] On multipliers, Ann. Math., Volume 81 (1965), pp. 364-379 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique