Comptes Rendus
Number theory
A new theorem on quadratic residues modulo primes
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1065-1069.

Let p>3 be a prime, and let (· p) be the Legendre symbol. Let b and ε{±1}. We mainly prove that

N p (a,b):1<a<panda p=ε=3-(-1 p) 2,

where N p (a,b) is the number of positive integers x<p/2 with {x 2 +b} p >{ax 2 +b} p , and {m} p with m is the least nonnegative residue of m modulo p.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.371
Classification: 11A15, 11A07, 11R11
Qing-Hu Hou 1; Hao Pan 2; Zhi-Wei Sun 3

1 School of Mathematics, Tianjin University, Tianjin 300350, People’s Republic of China
2 School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046, People’s Republic of China
3 Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G9_1065_0,
     author = {Qing-Hu Hou and Hao Pan and Zhi-Wei Sun},
     title = {A new theorem on quadratic residues modulo primes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1065--1069},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.371},
     language = {en},
}
TY  - JOUR
AU  - Qing-Hu Hou
AU  - Hao Pan
AU  - Zhi-Wei Sun
TI  - A new theorem on quadratic residues modulo primes
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1065
EP  - 1069
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.371
LA  - en
ID  - CRMATH_2022__360_G9_1065_0
ER  - 
%0 Journal Article
%A Qing-Hu Hou
%A Hao Pan
%A Zhi-Wei Sun
%T A new theorem on quadratic residues modulo primes
%J Comptes Rendus. Mathématique
%D 2022
%P 1065-1069
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.371
%G en
%F CRMATH_2022__360_G9_1065_0
Qing-Hu Hou; Hao Pan; Zhi-Wei Sun. A new theorem on quadratic residues modulo primes. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1065-1069. doi : 10.5802/crmath.371. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.371/

[1] Henri Cohen A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, 1993 | DOI | Zbl

[2] Harold Davenport The Higher Arithmetic. An Introduction to the Theory of Numbers, Cambridge University Press, 2008

[3] Qing-Hu Hou; Zhi-Wei Sun Sequence A320159 at OEIS (On-Line Encyclopedia of Integer Sequences), 2018 (http://oeis.org/A320159)

[4] Kenneth Ireland; Michael Rosen A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics, 84, Springer, 1990 | DOI

[5] Zhi-Wei Sun Quadratic residues and related permutations and identities, Finite Fields Appl., Volume 59 (2019), pp. 246-283 | MR | Zbl

[6] Zhi-Wei Sun Quadratic residues and quartic residues modulo primes, Int. J. Number Theory, Volume 16 (2020) no. 8, pp. 1833-1858 | MR | Zbl

Cited by Sources:

Comments - Policy