Comptes Rendus
Partial differential equations, Control theory
Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1135-1144.

In this paper we study the motion of a rigid body driven by Newton’s law immersed in a stationary incompressible Stokes flow occupying a bounded simply connected domain. The aim is that of trajectory tracking of the solid by the means of a control in the form of Dirichlet boundary data on the outside boundary of the fluid domain. We show that it is possible to exactly achieve any smooth trajectory for the solid that stays away from the external boundary, by the means of such a remote control. The proof relies on some density methods for the Stokes system, as well as a reformulation of the solid equations into an ODE.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.374
József J. Kolumbán 1

1 Budapest University of Technology and Economics, Department of Differential Equations, 1111 Budapest, Egry József u. 1 Building H, room H42
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G10_1135_0,
     author = {J\'ozsef J. Kolumb\'an},
     title = {Remote trajectory tracking of a rigid body in an incompressible fluid at low {Reynolds} number},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1135--1144},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.374},
     language = {en},
}
TY  - JOUR
AU  - József J. Kolumbán
TI  - Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1135
EP  - 1144
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.374
LA  - en
ID  - CRMATH_2022__360_G10_1135_0
ER  - 
%0 Journal Article
%A József J. Kolumbán
%T Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
%J Comptes Rendus. Mathématique
%D 2022
%P 1135-1144
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.374
%G en
%F CRMATH_2022__360_G10_1135_0
József J. Kolumbán. Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1135-1144. doi : 10.5802/crmath.374. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.374/

[1] François Alouges; Antonio DeSimone; Aline Lefebvre Optimal strokes for low Reynolds number swimmers: an example, J. Nonlinear Sci., Volume 18 (2008) no. 3, pp. 277-302 | DOI | MR | Zbl

[2] François Alouges; Laetitia Giraldi Enhanced controllability of low reynolds number swimmers in the presence of a wall, Acta Appl. Math., Volume 128 (2013) no. 1, pp. 153-179 | DOI | MR | Zbl

[3] G. Bossis; John F. Brady Dynamic simulation of sheared suspensions. I. General method, J. Chem. Phys., Volume 80 (1984), pp. 5141-5154 | DOI

[4] Muriel Boulakia; Anne-Claire Egloffe; Céline Grandmont Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem, Inverse Probl., Volume 29 (2013) no. 11, 115001, 21 pages | DOI | MR | Zbl

[5] Muriel Boulakia; Sergio Guerrero Local null controllability of a fluid-solid interaction problem in dimension 3, J. Eur. Math. Soc., Volume 15 (2013) no. 3, pp. 825-856 | DOI | MR | Zbl

[6] Muriel Boulakia; Axel Osses Local null controllability of a two-dimensional fluid-structure interaction problem, ESAIM, Control Optim. Calc. Var., Volume 14 (2008) no. 1, pp. 1-42 | DOI | Numdam | MR | Zbl

[7] Howard Brenner; Michael E. O’Neill On the Stokes resistance of multiparticle systems in a linear shear field, Chem. Eng. Sci., Volume 27 (1972) no. 7, pp. 1421-1439 | DOI

[8] J. Carling; T. L. Williams; G. Bowtell Self-propelled anguilliform swimming: simultaneous solution of the two-dimentional Navier-Stokes equations and Newton’s laws of motion, J. Exp. Biol., Volume 201 (1998) no. 23, pp. 3143-3166 | DOI

[9] Jean-Michel Coron; Frédéric Marbach; Franck Sueur Small time global exact null controllability of the Navier–Stokes equation with Navier slip-with-friction boundary conditions, J. Eur. Math. Soc., Volume 22 (2020) no. 5, pp. 1625-1673 | DOI | Zbl

[10] Caroline Fabre; Gilles Lebeau Prolongement unique des solutions de l’équation de Stokes, Commun. Partial Differ. Equations, Volume 21 (1996) no. 3-4, pp. 573-596 | DOI | Zbl

[11] Giovanni P. Galdi On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Ration. Mech. Anal., Volume 148 (1999) no. 1, pp. 53-88 | DOI | MR | Zbl

[12] Olivier Glass; Thierry Horsin Lagrangian controllability at low Reynolds number, ESAIM, Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1040-1053 | DOI | MR | Zbl

[13] Olivier Glass; József J. Kolumbán; Franck Sueur Remote trajectory tracking of rigid bodies immersed in a two-dimensional perfect incompressible fluid, Pure Appl. Anal., Volume 3 (2021) no. 4, pp. 613-652 | DOI | MR | Zbl

[14] Matthieu Hillairet Lack of collision between solid bodies in a 2D incompressible viscous flow, Commun. Partial Differ. Equations, Volume 32 (2007) no. 9, pp. 1345-1371 | DOI | MR | Zbl

[15] Matthieu Hillairet; Takéo Takahashi Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., Volume 40 (2009) no. 6, pp. 2451-2477 | DOI | MR | Zbl

[16] Richard M. Höfer; Christophe Prange; Franck Sueur Motion of several slender rigid filaments in a Stokes flow, J. Éc. Polytech., Math., Volume 9 (2022), pp. 327-380 | DOI | MR | Zbl

[17] Oleg Imanuvilov; Takéo Takahashi Exact controllability of a fluid-rigid body system, J. Math. Pures Appl., Volume 87 (2007) no. 4, pp. 408-437 | DOI | MR | Zbl

[18] József J. Kolumbán Control at a distance of the motion of a rigid body immersed in a two-dimensional viscous incompressible fluid, J. Differ. Equations, Volume 269 (2020) no. 1, pp. 764-831 | DOI | MR | Zbl

[19] H. Liu; K. Kawachi A numerical study of undulatory swimming, J. Comput. Phys., Volume 155 (1999) no. 2, pp. 223-247 | DOI | Zbl

[20] Jérôme Lohéac; Alexandre Munnier Controllability of 3D low Reynolds number swimmers, ESAIM, Control Optim. Calc. Var., Volume 20 (2014) no. 1, pp. 236-268 | DOI | Numdam | MR | Zbl

[21] Jorge San Martín; Jean-François Scheid; Takéo Takahashi; Marius Tucsnak An initial and boundary problem modeling fish-like swimming, Arch. Ration. Mech. Anal., Volume 188 (2008) no. 3, pp. 429-455 | DOI | MR | Zbl

[22] Jorge San Martin; Takéo Takahashi; Marius Tucsnak A control theoretic approach to the swimming of microscopic organisms, Q. Appl. Math., Volume 65 (2007) no. 3, pp. 405-424 | MR | Zbl

[23] Roger Temam Navier–Stokes Equations: Theory and numerical analysis, Studies in Mathematics and its Applications, 2, North-Holland, 1979 | Numdam

Cited by Sources:

Comments - Policy


Articles of potential interest

Controllability of a fluid-structure interaction system coupling the Navier–Stokes system and a damped beam equation

Rémi Buffe; Takéo Takahashi

C. R. Math (2023)


Two-dimensional local null controllability of a rigid structure in a Navier–Stokes fluid

Muriel Boulakia; Axel Osses

C. R. Math (2006)